Thermo-mechanical properties of damaged tungsten surfaces

R. Doerner, R. Chen, G. Tynan, J. Barton and M. Simmonds UCSD
Y. Wang, N. Mara and S. Pathak LANL

UC-Lab collaborative proposal funded for three years by the UC Office of the President

Main thrust of the proposal

UCSD/LANL -

- Utilize the unique capabilities of the LANL IBML (Ion Beam Materials Laboratory)and UCSD PISCES Facility to damage the near surface regions of W targets
- Employ novel nanotechnology diagnostic techniques to interrogate the near-surface region to determine the thermal and mechanical properties of the thin damaged layer

IBML uses energetic ions to simulate neutron damage of plasma-facing materials

UCSD/LANL —

- A variety of heavy ions can impart surface damage to W targets
- Dual beam capability allows sequential and simultaneous He ion implantation
- Heated target holder allows damage annealing studies

ATIONAL LABORATOR

High flux plasma exposure occurs in PISCES-A

- PISCES-A device is used to facilitate sample sharing
- Simultaneous steady-state plasma exposure of damaged and undamaged targets to pure D, H, or He plasma, also quantified D/He mixed species plasma
- Γ_{ion} up to 5e22 ions/m²s, $T_e \sim 5-20$ eV, $T_{surf} = r.t.$ to 900°C
- TEM analysis for determination of surface changes
- TDS for post-exposure retention studies

Nanotechnology diagnostics can probe only the damaged surface region of targets

- Nanoindentation is used to measure changes in mechanical properties at the Center for Integrated Nanotechnologies (CINT) at LANL
- Nano3 Laboratory at UCSD provides clean room facilities for pattern deposition to measure thermal properties using a 3ω technique
- TEM analysis available at both locations

Research topics

UCSD/LANL -

- Effects of room temperature damage with varying dose/dpa
 - Develop diagnostic procedures
 - Validate techniques against literature
- Inclusion of He in damage (sequential exposures @ rt)
 - Compare He ion beam damage to He plasma effects
- Influence of damage w & w/o He on D migration
 - Compare fluence dependences of He ion beam and plasma
- Vary temperature during damage to examine annealing [YR2]
- Simultaneous damage and He irradiation at a variety of temperatures to investigate He impact on annealing damage [YR3]

Using Indentation to Measure Radiation Damage

- The length scales in indentation (~ microns) are very complimentary to the size of the irradiation affected zone
- This makes indentation an ideal technique for measuring changes in local mechanical properties caused by irradiation

a 5.3E-3 3.2E-3 1.5E-3 LE22

He profile (atomic %) on TEM of irradiated Ag

Strain fields under a spherical indenter

Indenter radius	Indentation depth (<i>h</i>)	Contact radius (a)	Indentation zone ~2.4 <i>a</i>
1 µm	~10 nm	60 nm	144 nm
10 µm	~20 nm	250 nm	600 nm
100 µm	~40 nm	1,200 nm	2,880 nm
1000 µm *	>200 nm	12,800 nm	30, 720 nm

A series of differing indenter radii can be used to probe different depth scales

Helium implanted W for nanomechanical testing (~0.51 dpa, ~0.92 at%, ~18000 appm/dpa, ~500 nm)

UCSD/LANL

Multiple energies were used to generate a box-like profile 50 keV @7.2x10¹⁵ ions/cm² 100 keV @8.0x10¹⁵ ions/cm² 150 keV @4.0x10¹⁵ ions/cm² 200 keV @2.0x10¹⁶ ions/cm²

Indentation location on irradiated W sample

Irradiated vs. Unirradiated Tungsten: Preliminary Indentation Results

Irradiation induced hardening is measured using Stress-Strain analysis

- EST 1943 -

Thin Film Thermal Conductivity Measurement

- Apply $I(\omega)$
- *T* oscillates at 2ω by Joule heating $(Q = I^2 R)$
- *R* oscillates at $2\omega (R = R_o + \alpha T)$
- Can measure *T* rise from $V(3\omega)$

3ω Data Reduction Method

- 1. Fit the experimental data (triangle symbols) to a 2D heat transfer model (solid line)
- 2. Obtain parameters for the reference sample (κ of W substrate & SiO₂ layer)
 - The obtain κ values agree well with the literature values. (κ_W =174 W/m-K, κ_{SiO2} = 1.1-1.2 W/m-K, see J. Appl. Phys. **81** (6) 2590 (1997))
- 3. Apply the parameters from the reference sample to the fitting of the irradiate sample to obtain the only unknown parameter, namely, κ of the irradiated layer.

Thermal Conductivity of Plasma(He)-Irradiated Tungsten

UCSD/LANL

• κ of plasma-irradiated W (0.7±0.2 W.m⁻¹K⁻¹) is much lower than that of pristine W, presumably due to the defects formed during the irradiation.

•Between 300 and 500 K, κ of the plasma-irradiated W is independent of the temperature, also indicating that the electron scattering is dominated by the defects rather than phonon.

Ref: M. Roedig et. al , J. of Nucl. Mater. 329-333 (2004) 766-770

UCSD/LANL

Ref: M. Roedig et. al , J. of Nucl. Mater. **329–333** (2004) 766-770

Plasma exposure is used to measure impact of damage on D migration

UCSD/LANL -

- Targets damaged with ions at LANL are brought to PISCES for plasma exposure
- After plasma, targets are returned to LANL for D depth profiling using NRA
- Finally, targets are returned to UCSD for TDS determination of total D content in the sample bulk

Plasma implanted D accumulates in damaged regions

UCSD/LANL

Retention behavior of self-damaged W and W damaged by Cu ions begins to deviate at around 1 dpa.

From: W. Wampler and R. Doerner,

NF 49(2009)115023

He plasma pretreatment requires large He⁺ flux to inhibit D migration into the bulk, while high energy He⁺ does not

- Plasma ion energy was below W damage threshold, so helium concentration in W needs to be large enough to favor agglomeration and bubble growth (i.e. high flux necessary).
- 200 keV He ions can create and populate damage sites resulting in similar effects at much lower flux

UCSD/LANL

- 3 year project, year 1 recently completed
- Staffing, sample preparation and setup are all completed
- Initial results from nano-indentation and 3ω thermal measurements verify the capability of measuring the thermo-mechanical properties of thin damaged layers
- Preliminary results incorporating He into damaged regions seem to support basic principles of D/He interactions in tungsten and highlight the importance of helium production due to neutron bombardment

