

Monday		Tuesday		Wednesday	
8:30 AM	Welcome Remarks	8:30 AM	Session II continued	8:30 AM	Session V: PFC-PMIF Joint Session
	J. Rapp		R. Doerner		J. Brooks
	P. Pappano		F. Meyer		P. Pappano
	S. Zinkle		T. Abrams		S. Milora
9:00 AM	Session I: Status of existing and planned PMI facilities		J. Roth, <u>R. Doerne</u> r		B. Unterberg
	J. Rapp		R. Goulding		N. Ohno / Y.Nakashima
	A. Kreter	10:50 AM	Discussion		R. Doerner
	N. Ohno	11:35 AM	Lunch		M. Ulrickson
	K. Ichimura	12:35 PM	Session III: Diagnostics for PMI facilities		B. Wirth
	J. Linke		H.J. van der Meiden		J. Brooks
	KS. Chang		E.E. Scime		E. Tsitrone
11:40 AM	Discussion		T. Thomas	11:50 AM	Lunch
12:15 PM	Lunch		T. Biewer		
1:15 PM	Session II: Recent research highlights from PMI facilities	2:15 PM	Discussion		
	Y. Nakashima	3:00 PM	Session IV: Theory & Modeling for PMI facilities		
	J. Yu		D. Reiser		
	Th. Loewenhoff, <u>J. Linke</u>		L.Owen		
	A. Huber, <u>B. Unterberg</u>		D. Borodin, <u>D. Reise</u> r		
	H. Greuner		A. Arakcheev		
	C. Corr	4:40 PM	Discussion		
	B. Unterberg				
4:25 PM	Discussion				
5:30 PM	IEA Executive Committee Meeting	5:15 PM	Leave for Tour of Fusion Facilities	5:30 PM	Bus departure for Banquet

- MPEX (Rapp, ORNL):
 - Density production of $4 \times 10^{19} \text{m}^{-3}$ in helicon source has been achieved
 - Combined EBW coupling to overdense helicon plasmas was demonstrated
 - Upgrade from phase I to II of MPEX will increase RF power to 330kW (2014)
 - Installation of key diagnostics: Thomson Scattering, LIBS, IR camera, spectroscopy (2014)
 - Design of MPEX including target station able to handle neutron irradiated samples started (2014, 2015)
 - Modeling tools for linear systems are developed: SOLPS, EMC3-Eirene
- Jule-PSI (Kreter, FZJ)
 - Refurbishment of Hot Material Lab is completed, hot cells are being installed
 - Conceptual design of Jule-PSI completed
 - Design of versatile Be analysis facility completed, main parts purchased, assembly 2014
 - Pilot device of Jule-PSI, PSI-2 with new target station is operational

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

3

- Advanced divertor simulator (Ohno, Nagoya University):
 - New DC plasma source with zig-zag LaB₆ cathode and hollow Cu anode
 - Connected to Van de Graaf accelerator at Nagoya university
 - Plan to install the divertor simulator in radiation controlled area of Tohoku University to expose neutron irradiated samples (connected to TDS)
 - Main research thrust: hydrogen retention in irradiated materials
- Gamma-10/PDX tandem mirror (Nakashima, IchimuraTsukuba)
 - Additional ICRF heating increased ion flux to 10²³ m⁻²s⁻¹, 1MW/m²
 - Combined ICRF and ECH yielded 10MW/m² (5ms pulsed)
 - New divertor simulation experimental module was installed
 - Increase of plasma density in front of target by combined H₂ and Ar seeding to 4 x 10¹⁷m⁻³
 - Development of 1 MW gyrotrons for ECH to increase power on target to 20MW/m²
 - MPD Arcjet plasma source is added to Gamma 10 to study transient heat and particle loads (preliminary results: 4 eV, 10²⁰m⁻³)

K.S. Chung: Korean Fusion Researches on Plasma Material Interactions Summarv cEps Main Contacts : NFRI – Taehyeop Lho (<u>tlho@nfri.re.kr</u>) (Kyu-Sun Chung(HU) & Suk-Ho Hong(NFRI)) 1. KSTAR – NFRI -> 2nd phase PSI is included, now sample test possible. 2. MP^2 – NFRI -> divertor and PFC (input power \sim 20 kW) 3. ECR Device – NFRI -> molten salt (input power ~ 2 kW) 4. DiPS – Hanyang University -> divertor and PFC(power ~ 15 kW, flux ~10e23/(m^2.sec)) 5. TReD – Hanyang University -> dust removal and diagnostics 6. BPeX – dust/negative ion diagnostics, W test with laser and torch 7. High Power Torch Facilities – JNU -> 70 kW(installed) 400 kW(target), SNU -> W coating experiment 8. E-Beam Devices – Dankuk University -> PFC (target ~ 1 MW/m^2) 9. Proton Beam Accelerator (100 MeV, 20 mA) 10. Neutron Facility:Hanaro(Fast fission nts : 10^13 ~ 10^18 nts/m^2.sec) Wall conditioning and PFC materials(C/CFC & W) for the KSTAR and beyond are to be studied at HYU, NFRI, DKU, SNU Space and/or fusion materials are to be studied at JNU Proton and Neutron facilities are also available CENTER for EDGE PLASMA SCIENCES 499 (101) LABORATORY

Main conclusions from discussion in session I

- PMI studies on n-irradiated materials essential: e.g. fuel retention, erosion due to synergistic effects of heat and particle load onto PFM with degraded properties
- PMI facilities very complementary w.r.t. capabilities and diagnostics -> collaborative studies of special importance
- New wiki website to collect detailed info about the various PMI facilities, maintained by FZ Jülich

Session II: recent research highlights

Demostration of Transient heat load (ELMs and Disruption)	High heat flux experiments
Nd:YAG laser (PISCES) (~80 MJm ⁻² s ^{-1/2}) W, He damaged W Be coated W (Be-W alloying formation Threshold energy to remove Be coating) (J. Yu et al.)	H/He neutral beam (GLADIS) 10-15MW/m ² , long pulses, surface temp. $600-200^{\circ}C$ He irradiation \rightarrow nanocone structure (H. Greuner et al.)
e-beam (FZJ) -Steady state heat load: flat tile, monoblock design (neutron radiation effect) -Thermal shock load: Cracking depending on base surface temperature , orientation and size of grain (WUHP, WTa5, W-1.1TiC by Dr. Kurishita) (Th. Loewenhoff, J. Linke et al.)	Helicon source (NAGOYA-III type) (MAGPIE) Deuterium retention in Graphite and Diamond W(He irradiation – blistering) W 1%LaO (C. Corr et al.)
Laser (FZJ) W-UHP, ITER-grade at RT, 400 °C (Cracking pattern is similar to that of e-beam exp.) (A. Huber, B. Unterberg et al.)	

Session II: recent research highlights

Erosion (re-deposition) and Surface modifications

Investigate the influence of W on the erosion of EUROFER at energies close to W sputtering threshold Reduction of sputtering yield of EUROFER due to enrichment W near the surface (temperature dep.) (J. Roth, R. Doerner et al.)

Effects of neutron damage on nanofuzz formation using 1-30keV W self ions; He damage depending on crystal orientation Incident angle dependence and dual exposure for nano fuzz formation pre-damaged W (50dpa) \rightarrow no difference for nano fuzz formation (F. Meyer et al.)

Collaboration between LANL IBML energetic ions to simulate neutron damage of PWM and PISCES-A

Plat damage profile obtained by different energy Cu+ ion beam 3ω method thermal conductivity He damaged sample

 \rightarrow low conductivity

30% reduction of ion damaged W (0.2 dpa)

(R. Doerner et al.)

Demonstration of liquid target (Sn with W mesh) in PSI-2 linear device and TEXTOR tokamak Difference of erosion rate depending on droplet formation in tokamak (B. Unterberg et al.)

Li coating lifetimes in Li- coated graphite and TZM Mo Li target is demonstrated in MAGNUM-PSI Observed Li sputtering yields << Langmuir evaporation in vacuum (T. Abrams et al.)

Session III – Diagnostics for PMI facilities

- Thomson scattering systems (van der Meiden, DIFFER)
 - Advanced TS system: spatially variable (target or source); 0.07 eV < Te < 35 eV, n_{e min} ~ 10¹⁷ m⁻³, 2 sec temporal, 2 mm spatial resolution
 - Collective TS system designed: Ion temperature measurements, plasma flow velocity; should be operational this year
- Laser induced florescence diagnostic developed for DIII-D originally (Scime, UWV)
 - 3 methods were developed: perpendicular, counter propagating and conformal (which is the most compact)
 - Measurements in Kr and H helicon plasmas show differing ionization fractions and neutral density depletion profiles, possible to measure H isotope mixtures, wall loading effects
- Digital holography as erosion monitor (Thomas, 3DT)
 - Measurements accuracy of a few microns for ITER (dual laser system down to 100 nm), spatial resolution of mm; frame rates on order of kHz
 - System in use at LTX SGI, vibrations in system subtracted
- Diagnostics plans for MPEX: OES, LP-Probes, RFA, filter scope, TS, LIBS, IR (Biewer)
- Action: create database of diagnostic capabilities, develop diagnostic collaborations

Session IV – Theory & modeling for PMI facilities

- Drift fluid modeling of intermittent cycles, comparison to NAGDIS (Reiser, FZJ)
 - Spiraling vortices observed and lead to radial expulsion of particles in quasi-periodic modes
 - Reduced model to 3 scale lengths: pressure, potential, temperature
 - Compare to NAGDIS measurements
- Transport simulations in linear configurations (Owen, ORNL)
 - Increasing model complexity 2 point models, 1d fluid plasma/kin. neutrals, 2d fluid plasma/kin.neutrals
 - MPEX device modeled power, gas fueling, target and source with pumping included, B-field ripple
 - Simulated puff and pump experiments: plasma viscosity effects could enhance density at target
- ERO modeling of erosion (Borodin, Reiser, FZJ)
- Tungsten crack formation modeling for ELM-like heating pulse (Araksheev, Budker)
 - Model includes: thermal expansion, elasticity, plasticity, brittleness and DBTT
 - 3 conditions necessary for crack formation: temperature exceeds DBTT, max plastic stress exceeds ultimate tensile stress, residual stress exceeds ultimate tensile stress
 - Compared with JUDITH HHF damage database
- Actions: try to measure E-field profiles at several axial locations, dedicated runs to simultaneously measure all relevant parameters

