ITER Disruption Mitigation System Conceptual Design Review Highlights -Options for ITER

L. R. Baylor, S. K. Combs, N. Commaux, P.W. Fisher, S. J. Meitner, M. Lyttle, D. A. Rasmussen

Oak Ridge National Laboratory

Input from: **S. Maruyama** ITER Organization

> Presentation for: VLT Conference Call 16-Jan- 2013

- MHD instabilities can cause the plasma to become unstable and violently collide against the walls. (This is a disruption)
- 3 primary threats from a disruption:
 - Thermal load during thermal quench
 - JxB Forces from halo currents
 - Thermal load from runaway electrons during current quench
- ITER plasma current (~ 1 GJ) and ~350 MJ of thermal energy is dissipated in ~30 ms in a disruption causing thermal and structural design challenges.
 - Structural problems can be handled by careful design
 - Thermal excursion of first wall can lead to damage
- Runaway electrons can be generated by Coulomb collisions during the current decay phase of the disruption
 - ITER could have up to 10 MA of RE current in 15 MeV range of energy
 - Component melting and water leaks could result

- The largest thermal loads occur during Thermal Quench (must be reduced by factor of 10 by preventive material injection)
- Major mechanical forces act on plasma facing components during Current Quench (CQ time shall be controlled by DMS within limits 50-150 ms)
- Runaway electrons can be generated during Current Quench (RE current must be suppressed to less than 2 MA)

- The largest thermal loads occur during Thermal Quench (must be reduced by factor of 10 by preventive material injection)
- Major mechanical forces act on plasma facing components during Current Quench (CQ time shall be controlled by DMS within limits 50-150 ms)
- Runaway electrons can be generated during Current Quench (RE current must be suppressed to less than 2 MA)

- The largest thermal loads occur during Thermal Quench (must be reduced by factor of 10 by preventive material injection)
- Major mechanical forces act on plasma facing components during Current Quench (CQ time shall be controlled by DMS within limits 50-150 ms)
- Runaway electrons can be generated during Current Quench (RE current must be suppressed to less than 2 MA) (ITER has very strong RE amplification ~ e^{lp}

- The largest thermal loads occur during Thermal Quench (must be reduced by factor of 10 by preventive material injection)
- Major mechanical forces act on plasma facing components during Current Quench (CQ time shall be controlled by DMS within limits 50-150 ms)
- Runaway electrons can be generated during Current Quench (RE current must be suppressed to less than 2 MA) (ITER has very strong RE amplification ~ e^{lp}

2.2 General technical constraints on DMS systems

Current quench time limit

- EM loads and heat loads during current quench are strongly influenced by the CQ time duration
- DMS goal is to transform very short and very long CQ into disruptions with CQ time in the range of <u>50 - (≈150) ms</u>

Short CQ

- τ_{CQ}≈36 ms is the absolute lower boundary
- When fatigue is considered, τ_{CQ}≈50 ms is required for majority of disruptions.
- This is one of the hard limit for $\tau_{CQ} \Rightarrow$ Constraint for DMS

Long CQ

- Halo current tends to increase
- Heat load by particles tends to increase (localized) due to reduced radiation (boundary is not rigid and may not be hard limit)

- Large increase of plasma density during disruption can lower the plasma temperature and thus mitigate effects of thermal damage during TQ
- Particles must penetrate into the current channel during the current quench to prevent runaway electron formation
 - » If REs form, then inject material to stimulate dissipation
- Methods to increase the density and to mitigate disruptions are:
 - » Gas injection: Large burst of gas from fast valves
 - **>> Pellet injection**: Solid pellets accelerated into the plasma
 - » Liquid jet: Cryogenic liquid forced through a nozzle
 - **Solid particle injection**: Shattered large pellets or Be particles (ITER)

 For fastest time response the DMS injectors are to be located inside the port plugs

Jan2013 LRB

Shattered Pellet Concept for ITER

- SPI located in upper port plug(s) with pellet ~1.5m from plasma edge
- Injector has multiple barrels for redundancy and adjusting amount injected – combination of MGI and SPI is possible
- Bent tube for shattering located inside shield block

Equatorial Port for DMS RE Suppression/Dissipation

up to 100 kPa m³ for RE suppression

- SPI or MGI systems to be located in one equatorial port plug for runaway electron mitigation
- Injector has multiple barrels for redundancy and adjusting amount injected – combination of MGI and SPI is possible
- Bent tube for shattering located inside shield block

MGI Gas Valve Concept for ITER

- Valve seal is Vespel on stainless steel.
- Otherwise most similar to design of DMV-30 Juelich valve used on JET.
- Assume Vespel sealing force of 10 N/mm.
- Sealing force estimated at 1005 N (226 lbs).
- Coil is isolated from flyer plate by a stainless steel valve housing.

Time Scales and Quantities of Material Estimated for ITER

- Advance warning: 20-50 ms
- TQ time: ~3 ms
- CQ time: 50-150 ms (requirement)
- RE generation time: 20-40 ms
- Response time for needed for TQ mitigation (actuation + gas arrival delay) < 10 ms
- For RE suppression:
 - collisional suppression 10 ms
 - repetitive injection in CQ 1-3 ms
- RE dissipation needed if RE suppression fails

ITER Time Scales for Neon Gas/Pellet to enter the Torus (TM system in UPP)

 This assumes DM system is 1m from the plasma with realistic valve opening times.

Jan2013 LRB

Backup Plan to Locate Injector Outside of Port Plug

- Injector inside of port plugs cannot be maintained.
- Injectors located outside of port plug in port cell can be maintained, but is 11m away from plasma.
- This adds some 10- 30 ms to the response time for injection, but with enough precursor warning this may be enough.

Pros and Cons of the Most Favorable Techniques

• MGI of Ne, Ar, and D₂ (ITER – DCQYNS, 4H6CJQ)

- Proven technology for mitigation of thermal loads ITER size an issue?
- Ne does not activate, Ar activation is tolerable. D₂ might be needed to optimize gas mixture
- Does no harm to the wall
- Injection in CQ is possible (Works on DIII-D/TS for RE dissipation)
- Pumping system limit ~100 kPa-m³
- Fast reliable delivery system yet to be developed for ITER environment

SPI Large cryogenic shattered pellets (ITER – DCR5DE)

- Mature technology tested in DIII-D experiments
- Needs testing for RE dissipation (pellets do not ablate in CQ plasmas) (Gas, Liquid)
- Requires SCHe connection in the port plug Remote injector has longer response, but is maintainable.
- Gas propellant valve needed for ITER environment.
- Solid Be particles (ITER-DCQ2LE)
 - Easy to inject short delivery time but long disruption triggering time (!)
 - No load on pumping system, produce some dust, consistent with wall material
 - No runaway electrons produced (based on calculations)
 - Can be used only preventively (pellets do not evaporate in CQ plasmas)
 - Can result in wall damage or large fragments (hollow bullets to mitigate impact?)
 - Can result in too long CQ and large forces (must be evaluated)
 - Has not been tested. Reloading system needed. Need experimental tests on JFT (S. Putvinski)

Disruption Mitigation Schedule

Summary

- Disruption mitigation for ITER is an important capability needed to maintain the first wall (JET Be wall shows what can happen)
- Material injection on a fast time scale has been proven to mitigate most disruption effects and is planned for ITER
- Time scales and material quantities are a challenge for DMS material injection ITER.
- DMS concepts for ITER are:
 - Massive Gas Injection (TM, RE)
 - Shattered Pellet Injection (TM, RE)
 - Be Particle Injection (TM)
- CDR went well and concepts are now being engineered and tested by US ITER/ ORNL for ITER port plug environment.

Disruption Terminator

Jan2013 LRB