

Progress of ITER ion cyclotron transmission line and matching system tests including 6 MW resonant ring operation

R. Goulding, D. Sparks, D. Rasmussen, D. Swain, M. McCarthy, P. Pesavento, and the US ITER Team

VLT Conference Call

October 17, 2012

ITER ion cyclotron transmission line and matching system

- Provides matching of two antennas, each with 24 radiating elements fed through 2 poloidal X 4 toroidal feeds.
- Provides arbitrary toroidal phasing of mutually coupled elements, and passive ELM resilience through the use of an extensive decoupling network and hybrid power splitters
- Up to 3 MW net power per line at high VSWR at antenna feeds (40 MW power upgrade)
- Up to 6 MW net power per line at low VSWR (< 1.5) in lines between rf building and matching network (40 MW upgrade)
- Total length of all low VSWR lines ~ 1 km, with gas cooled inner conductors

The Resonant Ring and Resonant Line Test Stands – Principles of operation

- Resonant ring utilizes directional coupler to build up high circulating power with very little reflection. Useful for investigating cooling and testing transmission line components designed for low VSWR regions
- Resonant line uses an impedance matched line feeding into a quarter-wave resonator. This produces high voltage and electric fields at the open end for voltage handling tests of components such as gas barriers

Black: rf power from transmitter = 320 kW Red: rf power in ring = 6 MW Green: gas flow through 10 dB coupler (filtered building air) Blue: pressurized gas flow through resonant ring and stub (N₂, 3 bar abs pressure)

Resonant ring and resonant line

• Resonant ring

• Resonant line

The resonant ring has been used to confirm the feasibility of forced gas cooling of the ITER ion cyclotron transmission lines

- RF current (up to 650 A) flows in copper inner conductor and aluminum outer conductor, generates up to 1kW/m heat
- Turbulent gas at a pressure of 3 bar abs. efficiently transfers heat from inner to outer conductor, where it is removed through water cooling lines
- Direct water cooling of the inner conductor would be difficult: a water leak occurring in any of the hundreds of joints in the > 1 km long transmission line network would immediately halt

transfer

A 25 minute long 6 MW pulse has been achieved

- Other parameters; gas pressure-0.3 Mpa (3 bar absolute), gas circulation velocity: 6 M/s
- Ring operation very stable during pulse
- Low reflected power in ring (VSWR < 1.15) and feed line, with no need to make adjustments during pulse
- Input power ~ 320 kW, gain ~ 18X, 6 MW circulating power
- Maximum observed temperature on inner conductor ~ 83 °C.
 Design temperature limit is 150 °C (using dry N₂ gas to prevent oxidation of Cu surface)
- ITER transmission line cooling approach validated

800 s long pulse has been modeled using simple heat transfer model

- Turbulent flow produces near-uniform gas temperature, low ΔT in gas
- ΔT ignored except at film drops at inner conductor and outer conductor surfaces

Initial modeling results

- Model agrees reasonably well with data during temperature rise after rf turned on, but does not agree with decay after turnoff
- Model does not include thermal inertia due to mass of cooling connection pipes and fan housing, etc.
- Modeling suggests temperature reached is close to equilibrium

Three types of gas barriers will be tested on resonant line tester

Edge-cooled aluminum nitride

- Advantages
 - Very high thermal conductivity (k ~ 180 W/ m - °K) limits thermal stress
 - High power inner conductor connector

Disadvantages

- High dielectric constant ($\epsilon_r \sim 9$) increases electric field peaking and rf power dissipation in ceramic
- Elastomer pressure seals

Gas-cooled quartz

- Advantages
 - Low dielectric constant (ε_r ~ 3.8) minimizes electric field peaking and rf power dissipation in quartz
 - Low insertion force inner conductor
 - Metal o-ring seals
 - Disadvantages
 - Very low thermal conductivity (k ~ 1.4 W/ m -°K) – could require watercooled inner conductor

Conical gas cooled quartz

- Advantages
 - Low dielectric constant
 - Conical barrier shape reduces electric field
 - Gas baffles direct gas flow onto quartz
- Disadvantages
 - Conical barrier requires large increase in length
 - Elastomer pressure seals (but tritium compatible)

Some of the other transmission line and matching components to be tested

6 MW 4-port coaxial switch

20 – 300 pF high voltage vacuum capacitors

6 – MW hybrid power splitter

List of all components to be tested (does not include control and instrumentation)

- Three gas barrier designs
- $Z_0 = 50 \Omega$, gas cooled straights and elbows
- Z₀ = 20 Ω, water cooled straights, elbows and tees
- 6 MW Hybrid power splitter
- 4-Port Switch
- 50-ohm Stub Tuner
- 20-ohm Stub Tuner
- 50-ohm Phase Shifter
- 20-ohm Phase Shifter

- Directional couplers and voltage probes
- Compliance components
- Bellows and/or quickconnects
- Vacuum capacitors, with capacitor water cooling loop and purification system
- Four-Port Switch
- Six way cube

- A resonant ring test stand for use in gas cooling tests, and tests of gas cooled components, has operated successfully at a power level of 6 MW for 1500 s (25 m).
- The feasibility of the use of forced gas cooling of low VSWR high power transmission line has been demonstrated. The maximum measured inner conductor temperature for 6 MW @ f = 46.9 MHz, VSWR= 1.15, at the end of the 1500 s pulse was 83° C, compared to the 150 °C operating limit for the inner conductor, with temperatures reaching near equilibrium values.
- Some additional gas cooling tests will be performed in the resonant ring, including 3600 s tests @ VSWR = 1.5.
- This will be followed by a set of tests of prototype components used in the ITER Ion Cyclotron transmission line and tuning and matching system.