ECH Program Update

Watt's Happening in ECH Technology

Presented by Richard Temkin MIT Dept. of Physics MIT Plasma Science and Fusion Center

On behalf of the ECH Technology Program

August 15, 2012

OUTLINE

Introduction and Recent Accomplishments

New Experimental Results on Mode Competition in Megawatt Gyrotrons

ECH Technology Goals

• Upgrade of DIII-D to 12 MW

- Support ITER Project / ORNL ECH Program
- Support future needs of US fusion program including
 - DEMO
 - Other Machines
- Support industrial gyrotron development

ECH Technology Participants

4

Recent Accomplishments

r VLT

- Experimental and theoretical study of mode competition
- Demonstration of Smooth Mirror internal mode converter
- n Basic theory of High Order Modes of ITER ECH Transmission Lines

r Fusion Labs

- n GA: Upgrade of ECH system to 7.2 MW
- n ORNL: Complete design of ITER ECH Transmission Line System

Industry

- CPI: Fabrication of 1.2 MW, 110 GHz gyrotron for GA;
 Fabrication of 0.5 MW, 170 GHz gyrotron for ORNL ITER Project
- n GA: Fabrication of components for ITER ECH transmission lines

Small Businesses

- Calabazas Creek Research: Test of novel internal mode converter
- **n** Tech X: Computer code for calculating gyrotron beam/wave interaction
- Dymenso: New microwave load for ITER Project

Introduction

New Experimental Results on Mode Competition in Megawatt Gyrotrons

Gyrotron Schematic

Industrial CPI Gyrotron at DIIID

• 1 MW, 110 GHz, 10 sec

Gyrotron Mode Competition Illi

Minimum current required for oscillations to grow

Mode competition leads to reduced efficiency and possible operation in the wrong mode

Motivation for Start-Up Study

- Gyrotron nonlinear multi-mode simulation code (MAGY, MD & NRL) of voltage rise from 50 to 96 kV shows:
 - **n** High freq. (113 GHz, red) mode is excited prior to the design mode (110 GHz, green).
 - n Is this correct?

113 GHz ,110 GHz ,107 GHz

Motivation:

- Test Gyrotron multi-mode theory
- Investigate pulsed gyrotron operation needed for NTM suppression

* G. S. Nusinovich et al Phys Rev Lett Vol. 96 125101 (2006).

MIT Gyrotron

PliT

Power and Frequency Measurement

|'|iT

r 2 operating points have been examined in detail:

Gyrotron Mode Map

Power & Frequency vs. V @ B=4.38T

r High power operating point ($B_0 = 4.38 \text{ T}, B_g = 0.184 \text{ T}$):

Theory vs. Experiment

- **r** Theory predicts competition from high frequency modes (113 GHz)
- Experiment finds competition from lower frequency modes (108 GHz)

Theory Predicts 113 GHz Mode

Experiment Finds 108 GHz Mode

Dispersion Relation

 Uncoupled dispersion relation indicates that the modes seen at low voltages are backward waves with large axial k_z (far from cutoff):

MAGY Simulations

 MAGY simulations identify the excitation of TE_{21,6,q} (q > 1) modes during voltage rise:

MAGY simulations by O. Sinitsyn (U MD) 17

Conclusions

- VLT ECH Program continues to make major progress in support of FES program needs
 - Many recent accomplishments
- Mode excitation during Voltage Rise of the Gyrotron has been studied theoretically and experimentally
 - Multi-mode nonlinear code MAGY predicts high frequency mode competition
 - n Experiments show lower frequency modes are excited
 - n New simulations with MAGY identify the low frequency modes and their frequencies vs. voltage

Future Plans

- **n** Two frequency gyrotron research: 110 and 124 GHz
- Efficiency improvement in depressed collector gyrotrons

Acknowledgements

Research supported by DOE FES

- n G. Nusinovich
- n O. Sinitsyn
- n T. Antonsen
- University Wisconsin
 - n R. Vernon
 - n B. Rock

r MIT

- n M. Shapiro
- n D. Tax
- n W. Guss
- n J. Hummelt
- n I. Mastovsky

MADISON

