Initial Operation of MHD PbLi Facilities at UCLA. Near- and Long-Term Experiments. Research Highlights.

Presented by Sergey Smolentsev S. Smolentsev¹ M. Abdou¹ N. Morley¹ F-Ch. Li¹ T. Sketchley¹ Y. Ueki² ¹ UCLA, ² Kyoto University, Japan Phli SIC FC VLT Conference Call **July 18, 2012 US DCLL**

MHD and heat/mass transfer considerations are primary drivers of any liquid metal blanket design

Issue / phenomena		Self-Cooled		Dual-Coolant		He-Cooled
1. MHD pressure drop and flow balancing			High	Moderate		Moderate
2. Electrical insulation		I	High	Moderate		Low
3. Flows in a non-uniform B-field		I	High	High		Moderate
4. MHD instabilities and turbulence		I	High	High		Low
5. 3D effects in complex-geometry flows		I	High	High		High
6. Electromagnetic coupling			High	Moderate		High
7. Thermal convection		Мс	oderate	High		High
8. Thermal insulation			Low High		1	Low
9. Corrosion/deposition		I	High	High		High
10.Tritium transport		Мс	derate	High		High
Blanket type	<i>Re</i> =inertial/viscous		Ha=(MHD/viscous) ^{1/2}		<i>Gr</i> =buoyancy/viscous	
Self-Cooled (Li/V, generic)	3.2x10 ⁴		4.5x10 ⁴		2.0x10 ¹²	
Dual-Coolant (DCLL, TBM) 3.0x10 ⁴			6.5x10 ³		7.0x10 ⁹	
Helium-Cooled (HCLL, TBM) 670			1.1x10 ⁴		1.0x10 ⁹	

MHD PbLi loop is in operation since July 2011 as a part of MTOR Lab to study MHD/Heat&Mass Transfer processes specific to PbLi flows under blanket-relevant conditions

- PbLi alloy is the main liquid metal breeder/coolant considered for liquid blankets in the US and EU
- This PbLi loop is part of the MTOR laboratory at UCLA, and is the only MHD forced-convection PbLi loop in the US, one of a few in the World. Developed as part of the TITAN US-JA collaboration.
- This is a high temperature loop. Many challenges compared to room-temperature LM facilities. New flow diagnostics required. Characterization of PbLi required (composition, impurities, oxidation, structural changes)

MTOR Laboratory at UCLA

(*Magneto-Thermofluid Omnibus Research*) is a flexible set of flow loops, magnet systems and diagnostics

<u>Working fluids</u>: InGaSn, Hg, PbLi, KOH <u>Magnets</u>: BOB (1.8 T), QTOR (1 T, 1/R field)

Slide 4 of 11

The new loop has ~ 100 kg PbLi. Operation parameters up to: B=1.8 T, T=400°C, Q=50 l/min, Δ P=0.15 MPa. Fully operating.

5. Vacuum pump

10. Temperature monitoring

Since July 2011 there were 5 continuous runs, 3 weeks each

Achievable parameters: Ha=2500, Re=50,000 (max)

Development of diagnostics tools is ongoing

New diagnostics compatible with HT PbLi at T up to 550°C is required

- HT UDV System
 VELOCITY
- EM flowmeter - FLOWRATE

Current experiments address : (i) compatibility of structural materials with PbLi and (ii) MHD pressure drop reduction

1. Static testing of foam-based SiC FCI (Ultramet): T=700°C , P=0.1-0.5 MPa, 100 hrs

2. Dynamic testing of FCI (Ultramet): T~350°C, V~5-20 cm/s, B=0-1.8 T

3. Dynamic testing of three-surface-multi-layered channel (Japan): T~350°C, V~5-20 cm/s, B=0-1.8 T

A new DP system has been developed to extend MHD pressure drop measurements to PbLi flows at T>300°C

- Available pressure sensors (*e.g.* by Keller) are limited to 300°C
- •New DP system works at T>300°C
- DP measurements taken: fully developed MHD flow in a SS pipe, 5 locations
- T=350°C, B=0.5, 1.0, 1.5 T, Q=2-25 LPM
 Good match with theoretical predictions

Integrated modeling tools to couple MHD with Heat & Mass Transfer are developed along with experiments Ha~10⁴, Re~10⁴, Gr~10⁹

- HIMAG (HyPerComp Incompressible MHD Solver for Arbitrary Geometry) is a 3D, unstructured mesh, MHD/Heat Transfer parallel code. Developed by HyPerComp and UCLA. Started 10 years ago. Ha numbers up to 10,000.
- CATRIS (Corrosion and Tritium Transport Solver) is a new mass transfer solver coupled with HIMAG –started 2 years ago. Various models, such as "dilution approximation" and "particle tracking".
- TRANSMAG (<u>Transport Phenomena in</u> <u>Magnetohydrodynamic Flows</u>) – a new UCLA research code to address corrosion and transport of corrosion products in laminar and turbulent MHD flows.

Slide 10 of 11

Example: Very strong effect of B-field on corrosion of RAFM in flowing PbLi

- Existing data on the effect of B-field is limited and inconsistent.
- **Riga experiment (2009):** corrosion is doubled due to the B-field effect.
- Computations: either increase or decrease in the corrosion rate with B.
- Various effects of B-field, (non-uniform field, field direction, Q2D MHD turbulence) on corrosion are complex and need to be addressed via experiments and theory.

TRANSMAG: Side walls experience 2-3 times higher corrosion rate compared to *Hartmann walls* due to velocity jets.

Additional facility upgrades can substantially expand experimental capabilities

- A hot temperature (550°C) leg could be added for MHD flowinduced corrosion experiments / SiC FCI testing ~ <u>\$ 150 K</u>
- A companion He loop could be included for combined liquid metal / helium cooling capability for liquid metal blankets and first wall experiments ~ <u>\$ 200 K</u>
- A stronger (3-4 T) / bigger size (1m x 30 cm x 30 cm) magnet could be added for mock up testing of a LM blanket and its components (1/4-1/2 of full size) at Hartmann numbers up to 10,000
 - <u>>\$1M</u>

- Maximal magnetic field induction: 5 Tesla
- Work zone diameter: 30 cm
 - Work zone length: 1m

5 T superconducting magnet has been intensively used in IPUL (Latvia) over the last decade in MHD experiments