

Growth of tungsten nano-tendrils in the Alcator C-Mod Divertor

G.M. Wright, D. Brunner, B. LaBombard, B. Lipschultz, J.L. Terry, and D.G. Whyte Plasma Science & Fusion Center, MIT, Cambridge USA

Will surface morphology of a tungsten divertor modify into "fuzz" under Helium bombardment in **ITER and reactors?**

- Linear plasma devices, such as PISCES, have grown micron-thick nano-tendril or "fuzz" layers from metallic Mo/W surfaces
- He bubbles that precipitate in the bulk metal are playing an important role.
- The growth conditions are well-defined:
 - Clean, refractory metal surface
 - ➤ 1000 K < T_{surface} < 2000 K</p>
 - Flux of He-ions with $E_{He} \ge 20 \text{ eV}$
 - t^{1/2}-dependence on layer thickness
- All conditions are met for an all-W **ITER divertor**

What could a fuzzy divertor mean for ITER?

The Good:

1411

- Lower sputtering of W
- Reduced hydrogenic permeation
- Reduced crack formation from thermal cycling

The Bad:

- Mechanically fragile nano-tendrils
- Increased unipolar arcing
- Likely higher net erosion and W dust production

The Unknown:

- Impact on operational control?
- Is there a maximum attainable fuzz layer thickness in ITER?

Will inherent differences between tokamak plasmas and linear device plasmas prevent fuzz growth in a tokamak?

	Tokamak	Linear Device
B-field	~1 T, Grazing incidence	~0.1 T, Typically normal incidence
Parallel Heat flux	~100 MW/m ²	~1 MW/m ²
Exposure stability	Transient	Steady-state
Ionization MFP, Re-deposition	Short, prompt re- deposition	Typically > plasma column radius, little or no redeposition

• Exploit ITER/reactor similar C-Mod divertor to find the answer

- High parallel heat flux
- Mo and W first wall

|||iī

ITER-like densities

Alcator C-Mod helium plasmas produced necessary plasma conditions for fuzz growth at the outer strike point

• 14 repeated L-mode discharges

Illii

• $T_{e,divertor}$ 20-25 eV, $q_{||} > 0.2 \text{ GW/m}^2$

→~13 s of total exposure at appropriate growth conditions

Strike point run above vertical divertor face to reduce flux expansion allowing for higher local surface temperatures.

Ramped Tiles Tiles ramped ~2° into toroidal field

Tungsten Langmuir probe reached and exceeded surface temperatures required for fuzz growth

W Langmuir probe ramped ~11° into parallel heat flux and is actively biased during plasma discharges, -150 V - +50 V in 100 Hz triangle wave.

→W Langmuir probe intercepts significant parallel heat flux and *rapidly* reaches *high surface temperatures*.

W Langmuir probe surface heat flux is obtained directly from probe measurements, T_{surf} is determined from 1-D heat flux modeling.

Note: Surface continues to be modified at T_{surf} > 2000 K but the morphology changes

Nano-tendrils are fully formed on surface of the tungsten probe exposed to heat fluxes of 30-40 MW/m²

Шiī

After exposure

Thickness of individual tendril is 50-100 nm, which is thicker than tendrils grown at lower temperatures in linear devices (20-30 nm)

Is the growth rate determined with linear plasma devices applicable to fuzz grown in a tokamak?

14117

• Growth is estimated through $t^{1/2}$ -dependence: layer depth = $\delta \times G(T_{surf}) \times t^{1/2}$

where $G \propto \exp(-E_{act}/kT_{surf})$, $E_{act} = 0.71 \text{ eV}$ M.J. Baldwin, R.P. Doerner, Nucl. Fusion 48 (2008) 035001

 Calculated cumulative layer depth of ~515 nm for W probe

• Sputtering only a small contribution in W case -___ (~28 nm bulk W)

• The measured fuzz layer thickness was 600 ± 150 nm from FIB crosssectioning.

Conclusion: W fuzz can be grown in a tokamak environment

- C-Mod Growth rate is in-line with empirical formula from PISCES work
- Work is on going to obtain more growth rate data from linear devices (Pilot-PSI) at these high surface temperatures (1500-2000+ K)
- No signs of melting or arcing on W fuzz despite heat fluxes of 30-40 MW/m² and three 900 kA plasma disruptions.
- Projections for growth in ITER?

Шiī

Complicated by potential Be deposition, ELMS, and impurity seeding.

THANK YOU FOR YOUR ATTENTION!

Special thanks to: Matt Baldwin (*UCSD*), Russ Doerner (*UCSD*), and the Alcator C-Mod team