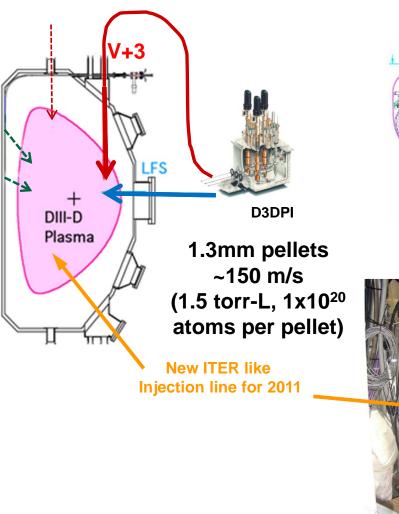

Pellet ELM Pacing Developments – DIII-D December Experiment Highlights

L.R. Baylor¹, T.C. Jernigan¹, N. Commaux¹, M. E. Fenstermacher³, C. Lasnier³, R.A. Moyer⁴, T. H. Osborne², P.B. Parks², T.E. Evans², E.J. Strait², E. Unterberg¹, A. Loarte⁵

¹Oak Ridge National Laboratory, Oak Ridge, TN, USA
²General Atomics, San Diego, CA, USA
³ Lawrence Livermore National Laboratory, Livermore, CA, USA
⁴University of California San Diego, San Diego, CA, USA
⁵ITER Organization, Cadarache, France

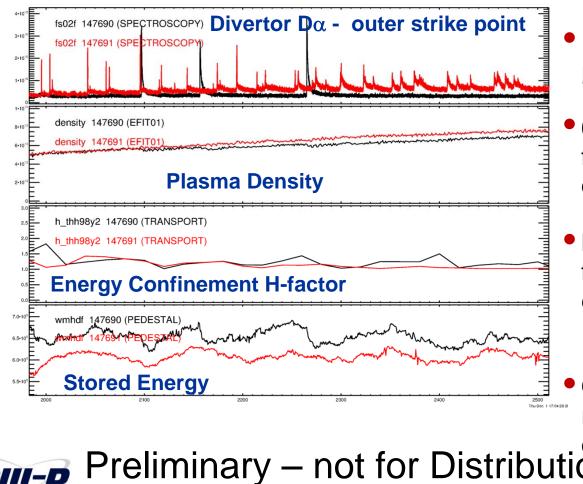
VLT Conference Call 21-Dec-2011



Overview

- Projected erosion of divertor materials by type I ELMs is a serious issue for ITER. ELM Pacing has been shown to reduce the ELM size.
- In support of ITER, the pellet injector gun design has been modified to produce small pellets at slow speeds.
- The new injector gun design has been successfully tested in the lab and at DIII-D, where a new LFS injection line was installed that mimics the ITER plan for pellet ELM pacing.
- New data from this trajectory confirms ELMs are triggered before the pellet reaches the top of the Te pedestal.
- Pellets injected at 60 Hz into plasma. Pacing observed at 5 10x the natural ELM frequency.

DIII-D Pellet ELM Triggering Experiment Performed with D₂ Pellets Injected from Low Field Side


New ITER like LFS injection line installed and tested on DIII-D. 1.3mm pellets injected appear to trigger ELMs.

Demonstration of ELM Pacing by 60 Hz Pellets

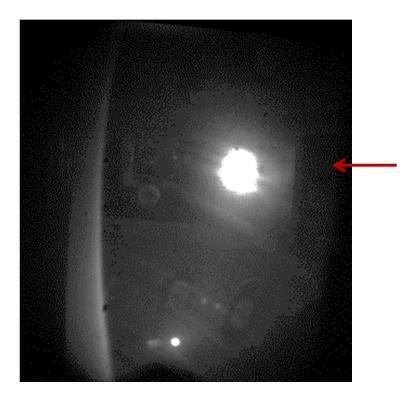
Pellet Shot

- **Non- Pellet Shot** ELM Pacing demonstrated at \sim 10x the natural ELM rate.
 - ITER Shape with ITER β_N~1.8
 - 60 Hz 1.3mm pellets injected from LFS midplane and 150-200 m/s. divertor at
 - Much smaller ELMs observed from the pellets. Large stored energy drops with natural ELMs.
 - Only modest fueling and reduction in H-factor observed.

Preliminary – not for Distribution

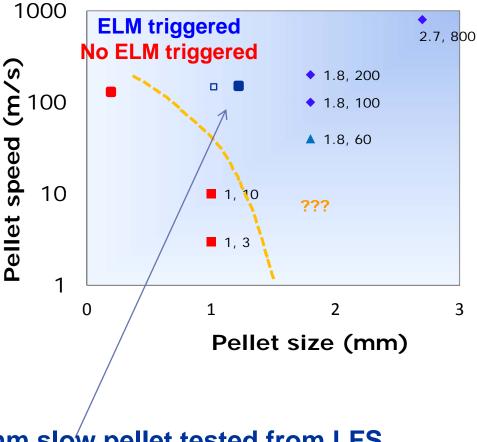
Reduction of Impurity Emission Intensity Observed with Pellet ELM Pacing

Pellet Shot Non- Pellet Shot SPRED_Ni26 147690 (SPECTROSCOPY) 1×10¹⁸ SPRED_Ni26 147691 (SPECTROSCOPY) Ni 26 intensity- plasma center 5x10¹ 6×10¹ oviii_102cx_av 147690 (SPECTROSCOPY) 5×10¹⁰ oviii_102cx_av 147691 (SPECTROSCOPY 3×10¹⁰ 2×10¹⁸ O 8 intensity- plasma edge 1×10¹³目 4x10¹ 3×10¹⁸ fs01f 147691 (SPECTROSCOPY) 2×10¹⁸ 1×10¹ Divertor $D\alpha$ - inner strike point 1800 2000 2400 3200 2200 2800 3000 2800


- ELM Pacing demonstrated at ~10x the natural ELM rate.
- ITER Shape with ITER β_N~1.8
- 60 Hz 1.3mm pellets injected from LFS midplane and divertor at 150-200 m/s.
- Much smaller ELMs observed from the pellets.
- Reduced high-Z and lower
 Z impurity signal intensity
 in the plasma core during
 the ELM pacing phase.

Preliminary – not for Distribution

Fast Camera Images of Pellets that Trigger ELMs


R-2 Pellet

LFSmid Pellet

Future Plans for DIII-D Pellet ELM Pacing

- What are the minimum pellet size and speed requirements to reliably trigger ELMs ?
- DIII-D is investigating this in concert with JET and ASDEX-U (ITPA PEP24).
- In 2012 we plan to tested 1.3x1.0mm pellets (~20% reduction in size).
- Also will investigate inner wall fueling combined with LFS ELM pacing pellets.

DIII-D Pellet Parameters

New 1.3mm slow pellet tested from LFS