Physics design calculations for the W7-X divertor scraper element

J.D. Lore^{1,2}, J.M. Canik², J.H. Harris², J. Tipton³, A. Lumsdaine²

^[1] Oak Ridge Associated Universities

^[2] Oak Ridge National Laboratory

^[3] University of Evansville

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

W7-X: a high-performance, long pulse stellarator

- Optimized for low neoclassical transport, small bootstrap current
- R= 5.5 m
- a= 0.53 m
- B= 3.0 T
- ECRH = 10MW (CW)
- ICRH = 2MW
- NBI = 4-8MW
- Superconducting coils
- Pulse length= 30 min
- Operations begin in 2015

W7-X will use an island divertor for power exhaust

- Island chain at edge defines last closed flux surface
- Helical X-point, qualitatively similar to poloidal divertor in tokamak
- Concept validated in W7-AS
- Restricts edge transform value allowable
 - $\iota_b \sim 1$ in W7-X (5/5 islands)

Edge transform changes as bootstrap current evolves

- Some configurations have finite bootstrap current
- Evolves on L/R time ~ 30s
- Changes boundary transform by ~5%
 - Alters island topology
 - With ι_b^{vac} ~ 1, full bootstrap current results in limiter configuration

Edge transform changes as bootstrap current evolves

- Some configurations have finite bootstrap current
- Evolves on L/R time ~ 30s
- Changes boundary transform by ~5%
 - Alters island topology
 - With ι_b^{vac} ~ 1, full bootstrap current results in limiter configuration
 - Present plan: start with vacuum transform reduced so that island divertor is formed with full I_{BS}

Scraper element added to protect tile edges during intermediate I_{BS} phase

- During bootstrap current build-up, field line footprints focus excessive heat flux on divertor tile edges
- New 'scraper element' is being designed to block field lines from reaching divertor edges in intermediate I_{BS} configurations

Field line tracing is used to estimate heat flux

- Field lines are followed in 3D including plasma contribution
 - VMEC^[1] for 3D equilibrium (only gives field inside LCFS)
 - Extender^[2] for plasma+coil fields outside LCFS
- Lines are initialized randomly along a field line that traces out a closed surface
 - Lines are then diffused with a given D_m
 - Example: 2000 lines, 10000 transits, D_m=1e-6 m²/m
 - For 50eV electrons this corresponds to χ_e = 4.2 m²/s
 - Sensitivity studies to be performed with respect to these parameters
- Intersections of field lines with targets used to estimate plasma fluxes

[1] S.P. Hirshman, et al, Comp. Phys. Commun. 43, 143 (1986). [2] M. Drevlak, et al, Nucl. Fusion, 45, 731 (2005).

7 Managed by UT-Battelle for the U.S. Department of Energy

Field line tracing shows function of divertor scraper element

- Intersections are found both with and without the scraper element
- OkA: Load is near middle of horizontal target, no load on scraper

Field line tracing shows function of divertor scraper element

- Intersections are found both with and without the scraper element
- 0kA: Load is near middle of horizontal target, no load on scraper
- 22kA: Without scraper edges of target are loaded; scraper catches most of this flux

Field line tracing shows function of divertor scraper element

- Intersections are found both with and without the scraper element
- 0kA: Load is near middle of horizontal target, no load on scraper
- 22kA: Without scraper edges of target are loaded; scraper catches most of this flux
- 43kA: Footprint has moved away slightly from the target edge, scraper load reduced

Field line density used to estimate heat flux

 Heat flux is calculated by assuming each field line carries a fraction of the power through the LCFS

 $- P_{\text{line}} = P_{\text{LCFS}} / N_{\text{line}}$

- Surface is then split into area 'bins', with Q = (# strikes)·P_{line}/A_{bin}
- Highest scraper heat flux in current scan occurs for 22kA of bootstrap current
- Heat flux calculations act as input to engineering design

Heat flux feeds into heat transfer calculations*

- Scraper elements will be constructed from CFC monoblocks (qualified for ITER)
 - Rated for 20MW/m² steady state, design goal for SE is 12MW/m²
- Water cooled with twisted tape piping
- Monoblocks can be arranged toroidally or poloidally (shown), with number of circuits as a design option

*Modeling performed by J. Tipton

Initial calculations indicate peak temperature of 976°C

- Calculations are for a conservative model of the highest heat flux in steady state
 - The peak heat flux was applied over a single band with the wetted area chosen to match the total power to the scraper (400kW)
 - Fluid and thermal modeling performed using ANSYS CFX
 - All design criteria (pressure drop, fluid temp rise, max CFC temp) satisfied

Future work

- Heat flux calculations
 - Sensitivity studies must be performed, e.g., number of field lines, magnetic diffusivity, number of transits
 - Scan magnetic configuration space to determine if other high flux scenarios exist
 - Geometric studies to determine effects of misalignments of elements, gaps between tiles
- Thermal and structural modeling and design
 - Modeling/design of 180° connections between monoblock channels
 - Structural modeling of elements
 - Changes to scraper geometry to meet constraints
- Iteration between flux calculations and engineering design
- Longer term: 3D modeling using the EMC3-Eirene [1] to investigate the effect of the scraper element on neutrals and recycling

14 Managed by UT-Battelle for the U.S. Department of Energy National Laboratory

Extra slides

15 Managed by UT-Battelle for the U.S. Department of Energy

All design criteria satisfied even for conservative model of 'worst case'

Variable	Limit	Туре	Result	Source
Pressure Drop	14 [bar]	Constraint	8.5 [bar] ± 10%	Semi-Empirical
Mean Fluid Temp Rise	50 [C]	Constraint	34 [C]	Energy Balance
Local Fluid Temp	224 [C]	Constraint	N/A	Assumed Non-active
Max CFC Temp	≈1200 [C]	Objective	976 [C] ± 10%	CFD (Grid Convergence)