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W Temperature & PMI are coupled

~ 600 - 700 K ~900 - 1900 K

PISCES-B: mixed D-He plasma
M.J. Baldwin et al, NF 48 (2008) 035001

(a) Bright field image (under focused image) 1200 K, 4290 s, 2x1026 H€+/m2, 25 eV He* 26X 107 /m? 0.9 X 1027 /m?
i — 3.7%x10% /m?s 1.2%10% /m?s
= 3 7200 s 7200 s
2100 K 2600 K

NAGDIS-I1I: pure He plasma
N. Ohno et al., in IAEA-TM, Vienna, 2006
1250 K, 36000 s, 3.5x10%7 He*/m?, 11 eV He*

r

S-A: D,-He plasma
M. Miyamoto et al. NF (2009) 065035
600 K, 1000 s, 2.0x10%* He*/m?, 55 eV He*

* Little morphology M |
* He nanobubbles form 100 nm (VPS W on C) (TEM)

* Occasional blisters « Surface morphology

 Evolving surface
* Nano-scale ‘fuzz’

- .
PISCE

D. Nishijima et al. INM (2004) 329-333 1029
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Growth rate of W fuzz surface layer
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PISCES —

Fuzz thickness, A, obeys Fick’s
Law, A = (2Dt)1/2

[M. Baldwin et al., NF 48(2008)035001]

Fuzz growth rate exhibits t-1/2
behavior, dA/dt = (D/2t)1/2

Arrhenius relationship with
surface temperature, E, ~ 0.7 eV

Similar growth for pure He or
D,-He mixed plasma

W fuzz growth rate saturates once
He flux is sufficient to promote

maximum fuzz growth

[From M. Baldwin et al., JNM 390-391(2009)886]
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W fuzz growth should be balanced by erosion

PISCES =—
; : ; ITER outer divertor ion flux ~ 1 x 10 2 m2s1
ITER outer divertor strikepoint Surface temperature ~ 1120 K
only area in net erosion and . "
hot enough for fuzz growth T Ve 710° -
[J. Brooks et al., NF 49(2009)035007]

—Y =10°
ITER net /
1000 / i

100 =

Assume He fraction in divertor
IS >1%, SO maximum possible
growth rate is achieved

[M. Baldwin et al., JNM 390-391(2009)886.]

Net erosion rate In ITER IS
uncertain but can be estimated
(assume Y reg pet = 104 — 107) y . . .

So fuzz layer thickness, A, Is Time (sec)
A =J((D/2t)°5 - Y, )t

Fuzz layer thickness (nm)
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PISCES-A conditions can be used to verify
predictions for equilibrium fuzz layer thickness

PISCES =—
P-A: T,.=1x10% m?s?,
10° ' ' Tyw=1120 K
Fuzz growth no erosion
T Vo 715 X107 « Growth rate of W fuzz
Ym0 / remains unchanged since He
flux is sufficient to promote

maximum growth

[From M. Baldwin et al., JNM 390-391(2009)886]

» Weight loss measures net
erosion during exposure
(includes redep, angular

| | effects, impurity erosion,...)

10 100 1000 @ when E- is large
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Measure equilibrium fuzz
thickness while eroding In
PISCES-A

PISCES —

coced T ucpisces « Expose W to He
s plasma for 1 hr.

at 1120 K while

measuring net

yield

at 250 eV

at 200 eV

<—at60eV (no
erosion case)

.
.......

28, 888
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Equilibrium fuzz thickness in PISCES agrees
with ITER methodology predictions

Layer thickness (nm)

PISCES =—
i » Use measured erosion yield
——Y_=0(60eV He) | for He on W (i.e. net yield)
T Vi TL5X107 (200 eV He) (measured Y is lower than

TTY  =34x 10™ (250 eV He)

O Measured thickness @ 60 eV TRI M, bUt redep |S nOt yEt
[0 Measured thickness @ 200 eV
< Measured thickness @ 250 eV modeled)
1000 |- 1« But will fuzz overheat?
AT = (q*A)/x

where «,,, ~ 100 W/mK

So fuzz won’t support much AT
100 . 120K and won’t overheat during
° el  steady-state heat loads even
e (sec) ]
with reduced «,,,
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When sputtering of Be exceeds the incident

flux of Be In the plasma, fuzz will form

When surface iIs In
net erosion, even

with Be in the Eion~ 60 eV
i T.~ 1120 K
plasma, fuzz will - sobos

D,-0.2He

grow

Net deposition
prevents fuzz growth

RN 03102008

Thinner fuzz layer —
results from Be Eion~ 60 eV
. T~ 1120 K
erosion of W fuzz at t= 5000 s
fae = 0.002
60 eV (no D or He Do-0.2He

erosion at 60 eV)

RN 03142008
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How will W fuzz respond to transients?

Time [ms] '

Fig. 1. Time evolution of (a) Iewn. (b) La. and (c)
calculated T:¢. The absorbed energy density to the
target. Q. 1s ~ 0.7 MI/m2.

PISCES —

Samples exposed to U. of Hyogo
(Prof. Nagata) plasma gun pulses

W samples pre-exposed to He
plasma at 300°C show melting and
cracking after 10 - 0.5 MJ/m? pulses

W fuzz samples survive 10 - 0.7
MJ/m? pulses without cracking or
melting (50 MJ/m?s1/2)

Pre-plasma exposure

Sample in PISCES-A 0.7 MJ/m? x 10 shots
WU-3 None (mirror) Cracked

WD-4 D (blister) Cracked
WHe-B4 | He (smooth, bubbles) Cracked
WHe-F4 | He (fuzzy ~ 3 um) Not Cracked
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Premade W fuzz samples survive plasma gun
heat and particle loads

PISCES —

[D. Nishijima et al., submitted to FusTech]

* Fuzzy W samples do not crack
after repeated ~0.7 MJ/m? shots

 Larger surface area may dissipate
heat load or nano-castelation

e e effect

 However, arc tracks are observed
only on fuzzy W samples

(a)

Fig. 4. SEM images of fuzzy W surfaces (L ~ 3 um). (a) 00
WHe-F3: without plasma gun shots. (b) WHe-F4: after

10 plasma gun shots with ~ 0.7 MJ/m? per shot.
. P. Doerner, VLT Call, Jan. 17, 2011

c
He)
]
]




Summary : Due to initially fast growth of W fuzz, ITER
should expect some equilibrium thickness nanostructure to
form in the erosion zone of a W divertor

Pros

e Self limited t/2
growth at surface.

 Erodes with lower
sputter yield w.r.t
bulk W.

* Verylow hydrogen
isotope retention.

 Good permeation
barrier.

e Seemingly more

resilient to power
loads.

cons

Unknown material
properties w.r.t W.

Potential for
enhanced material
loss (dust
production) during
transients.

Surface and
potential deep
grain boundary
destruction.

Increased arcing.
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Outlook

Fuzz will manifest
in long pulse high T
reactors w/ W FW,
but can we live
with it?

Is W fuzz an
improved plasma-
facing material?
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