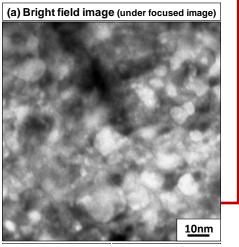
## Simulation measurements of tungsten fuzz in confinement devices

### R. P. Doerner, for the PISCES Team

Center for Energy Research, University of California – San Diego, USA

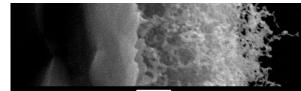
Work performed in collaboration with:


US-EU Collaboration on Mixed-Material PMI Effects for ITER TITAN US-Japan Collaboration ITER IO Physics Division

## W Temperature & PMI are coupled

#### ~ 600 - 700 K

#### ~ 900 – 1900 K

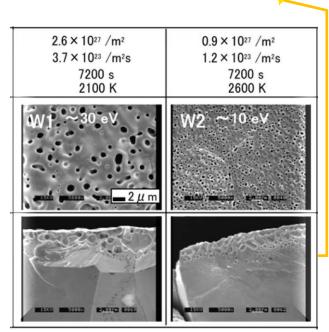

#### > 2000 K



**PISCES-A: D<sub>2</sub>-He plasma** *M. Miyamoto et al. NF (2009) 065035* 600 K, 1000 s, 2.0x10<sup>24</sup> He<sup>+</sup>/m<sup>2</sup>, 55 eV He<sup>+</sup>

- Little morphology
- He nanobubbles form
- Occasional blisters

**PISCES-B: mixed D-He plasma** *M.J. Baldwin et al, NF 48 (2008) 035001 1200 K, 4290 s, 2x10<sup>26</sup> He<sup>+</sup>/m<sup>2</sup>, 25 eV He<sup>+</sup>* 

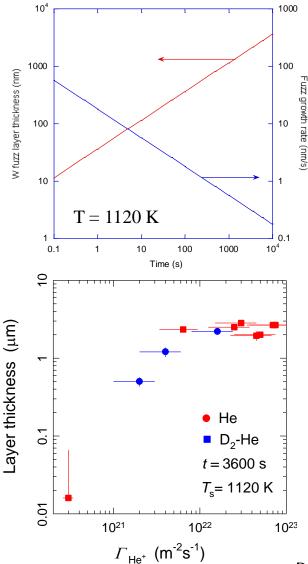



30kV X30,000 <mark>0.5мm</mark> 0147 UC PISCES

**NAGDIS-II: pure He plasma** *N. Ohno et al., in IAEA-TM, Vienna, 2006 1250 K, 36000 s, 3.5x10<sup>27</sup> He<sup>+</sup>/m<sup>2</sup>, 11 eV He<sup>+</sup>* 



- 100 nm (VPS W on C) (TEM)
- Surface morphology
- Evolving surface
- Nano-scale 'fuzz'




NAGDIS-II: He plasma D. Nishijima et al. JNM (2004) 329-333 1029

- Surface morphology
- Shallow depth
- Micro-scale



### Growth rate of W fuzz surface layer



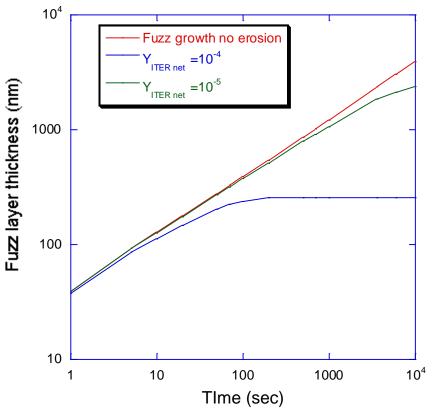
- Fuzz thickness,  $\lambda$ , obeys Fick's Law,  $\lambda = (2Dt)^{1/2}$ [M. Baldwin et al., NF 48(2008)035001]
- Fuzz growth rate exhibits  $t^{-1/2}$ behavior,  $d\lambda/dt = (D/2t)^{1/2}$
- Arrhenius relationship with surface temperature,  $E_a \sim 0.7 \text{ eV}$
- Similar growth for pure He or D<sub>2</sub>-He mixed plasma
- W fuzz growth rate saturates once He flux is sufficient to promote

maximum fuzz growth

[From M. Baldwin et al., JNM 390-391(2009)886]



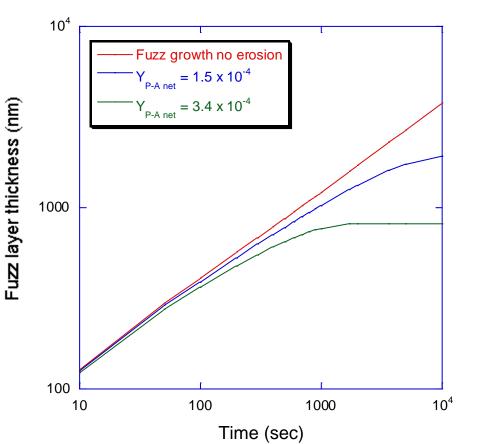



**PISCES** 

### W fuzz growth should be balanced by erosion

PISCES

- ITER outer divertor strikepoint only area in net erosion and hot enough for fuzz growth [J. Brooks et al., NF 49(2009)035007]
- Assume He fraction in divertor is >1%, so maximum possible growth rate is achieved [M. Baldwin et al., JNM 390-391(2009)886.]
- Net erosion rate in ITER is uncertain but can be estimated (assume  $Y_{\text{ITER net}} = 10^{-4} - 10^{-5}$ )
- So fuzz layer thickness,  $\lambda$ , is  $\lambda = \int ((D/2t)^{0.5} - Y_{net}) dt$

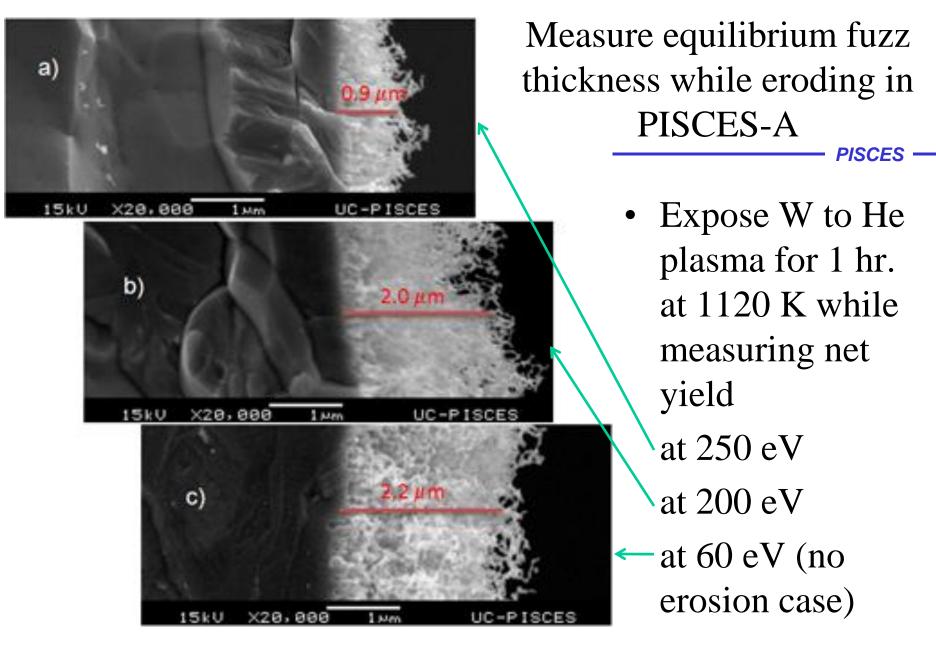

ITER outer divertor ion flux ~  $1 \times 10^{24} \text{ m}^{-2}\text{s}^{-1}$ Surface temperature ~ 1120 K





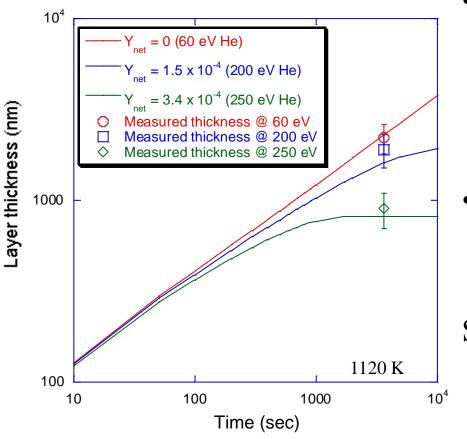
R. P. Doerner, VLT Call, Jan. 17, 2011

# PISCES-A conditions can be used to verify predictions for equilibrium fuzz layer thickness




P-A: 
$$\Gamma_{\text{He}} = 1 \text{ x } 10^{23} \text{ m}^{-2}\text{s}^{-1}$$
,  
 $T_{\text{W}} = 1120 \text{ K}$ 

- Growth rate of W fuzz remains unchanged since He flux is sufficient to promote maximum growth [From M. Baldwin et al., JNM 390-391(2009)886]
- Weight loss measures net erosion during exposure (includes redep, angular effects, impurity erosion,...) when E<sub>He<sup>+</sup></sub> is large




PISCES



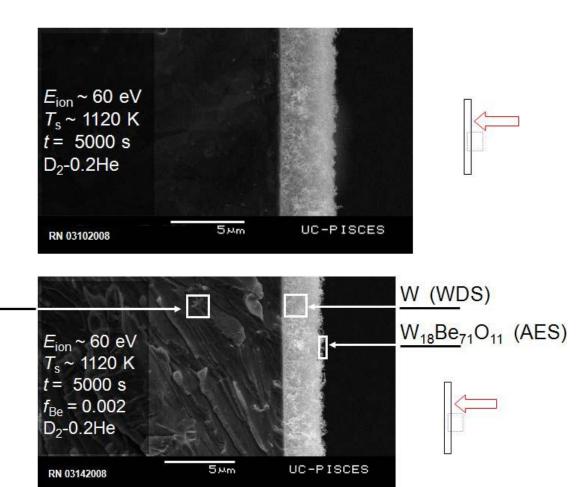
R. P. Doerner, VLT Call, Jan. 17, 2011

## Equilibrium fuzz thickness in PISCES agrees with ITER methodology predictions



 Use measured erosion yield for He on W (i.e. net yield) (measured Y is lower than TRIM, but redep is not yet modeled)

• But will fuzz overheat?  


$$\Delta T = (q^*\lambda)/\kappa$$
where  $\kappa_W \sim 100$  W/mK

So fuzz won't support much  $\Delta T$ and won't overheat during steady-state heat loads even with reduced  $\kappa_{fuzz}$ 



# When sputtering of Be exceeds the incident flux of Be in the plasma, fuzz will form

- When surface is in net erosion, even with Be in the plasma, fuzz will grow
- Net deposition prevents fuzz growth
- Thinner fuzz layer W-results from Be erosion of W fuzz at 60 eV (no D or He erosion at 60 eV)





PISCES -

### How will W fuzz respond to transients?

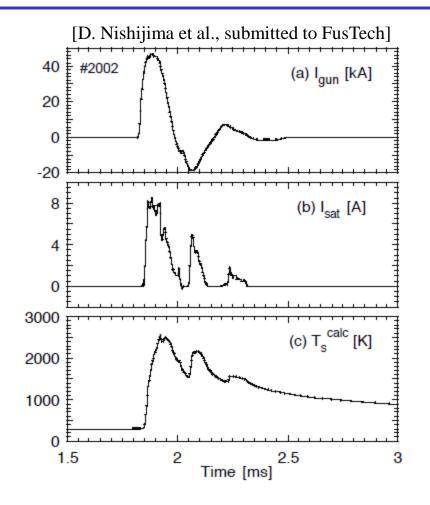



Fig. 1. Time evolution of (a)  $I_{gun}$ , (b)  $I_{sat}$ , and (c) calculated  $T_s^{calc}$ . The absorbed energy density to the target, Q, is ~ 0.7 MJ/m<sup>2</sup>.

- Samples exposed to U. of Hyogo (Prof. Nagata) plasma gun pulses
- W samples pre-exposed to He plasma at 300°C show melting and cracking after 10 - 0.5 MJ/m<sup>2</sup> pulses
- W fuzz samples survive 10 0.7 MJ/m<sup>2</sup> pulses without cracking or melting (50 MJ/m<sup>2</sup>s<sup>1/2</sup>)

| Sample | Pre-plasma exposure<br>in PISCES-A | 0.7 MJ/m <sup>2</sup> x 10 shots |
|--------|------------------------------------|----------------------------------|
| WU-3   | None (mirror)                      | Cracked                          |
| WD-4   | D (blister)                        | Cracked                          |
| WHe-B4 | He (smooth, bubbles)               | Cracked                          |
| WHe-F4 | He ( <b>fuzzy ~ 3</b> μ <b>m</b> ) | Not Cracked                      |
|        |                                    |                                  |



PISCES

## Premade W fuzz samples survive plasma gun heat and particle loads

[D. Nishijima et al., submitted to FusTech]

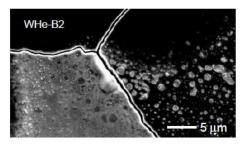



Fig. 3. W surface cracking on WHe-B2 after 10 shots with  $\sim 0.5~MJ/m^2\,per$  shot.

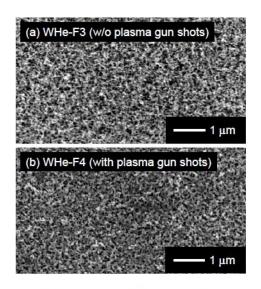
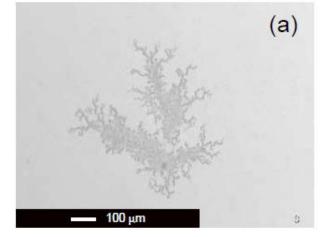




Fig. 4. SEM images of fuzzy W surfaces ( $L \sim 3 \mu m$ ). (a) WHe-F3: without plasma gun shots. (b) WHe-F4: after 10 plasma gun shots with ~ 0.7 MJ/m<sup>2</sup> per shot.

- Fuzzy W samples do not crack after repeated ~0.7 MJ/m<sup>2</sup> shots
- Larger surface area may dissipate heat load or nano-castelation effect
- However, arc tracks are observed only on fuzzy W samples





к. P. Doerner, VLT Call, Jan. 17, 2011

Summary : Due to initially fast growth of W fuzz, ITER should expect some equilibrium thickness nanostructure to form in the erosion zone of a W divertor

### Pros

- Self limited  $t^{1/2}$  growth at surface.
- Erodes with lower sputter yield w.r.t bulk W.
- Very low hydrogen isotope retention.
- Good permeation barrier.
- Seemingly more resilient to power loads.

### Cons

- Unknown material properties w.r.t W.
- Potential for enhanced material loss (dust production) during transients.
- Surface and potential deep grain boundary destruction.
- Increased arcing.

### Outlook

- Fuzz will manifest in long pulse high T reactors w/ W FW, but can we live with it?
- Is W fuzz an improved plasmafacing material?

