Status of Fusion Neutronics Predictive Capabilities

Mohamed Sawan

P. Wilson, L. El-Guebaly, D. Henderson, T. Bohm, B. Smith, A. Ibrahim

University of Wisconsin-Madison Fusion Technology Institute

VLT Research Highlight Presentation September 15, 2010

VLT, September 15, 2010

Nuclear Data Development for Fusion

- Represent US fusion neutronics community in the Cross Section Evaluation Working Group (CSEWG)
- Make sure that nuclear data needs for US fusion neutronics community are addressed satisfactorily
- Support development of updated FENDL-3 through participation in the IAEA sponsored Coordinated Research Project (CRP) and performing benchmark calculation for library validation and identification issues from the user's perspective

FENDL-2.1 Background

- Revision to FENDL-2.0 (1995/96)
- Compiled November 2003, INDC(NDS)-451
- 71 elements/isotopes
- Working libraries prepared by IAEA/NDS, INDC (NDS)-467 (2004)
- Reference data library for nuclear analysis of ITER and other fusion systems

Data Source for FENDL-2.1

No.	Library	NMAT	Materials
1	ENDF/B-VI.8 (E6)	40	² H, ³ H, ⁴ He, ⁶ Li, ⁷ Li, ⁹ Be, ¹⁰ B, ¹¹ B, ¹⁶ O, ¹⁹ F, ²⁸⁻³⁰ Si, ³¹ P, S, ^{35,37} Cl, K, ^{50,52-54} Cr, ^{54,57,58} Fe, ⁵⁹ Co, ^{61,62,64} Ni, ^{63,65} Cu, ¹⁹⁷ Au, ²⁰⁶⁻²⁰⁸ Pb, ²⁰⁹ Bi, ^{182-184,186} W
2	JENDL-3.3 (J33)	18	¹ H, ³ He, ²³ Na, ⁴⁶⁻⁵⁰ Ti, ⁵⁵ Mn, ^{92,94-98,100} Mo, ¹⁸¹ Ta,V
3	JENDL-3.2 (J32)	3	Mg, Ca, Ga
4	JENDL-FF (JFF)	4	12 C, 14 N, Zr, 93 Nb
5	JEFF-3 (EFF) JEFF3	4	²⁷ Al, ⁵⁶ Fe, ⁵⁸ Ni, ⁶⁰ Ni
6	BROND-2.1 (BR2)	2	¹⁵ N, Sn

Majority (40) of materials in FENDL-2.1 taken from ENDF/B-VI.8

 Investigated effect of recently released
 ENDF/B-VII.0
 (December 2006) on results for ITER
 calculational
 benchmark and four
 FNG ITER relevant
 integral experiments

Calculational and Experimental Benchmarks

MADISON

4

FENDL-3 Development

(http://www-nds.iaea.org/fendl3/)

- An effort was initiated by the IAEA in 2008 to update the FENDL library with the objective of improving the status of nuclear databases for fusion devices including IFMIF
- The library (FENDL-3) represent a substantial extension of FENDL-2.1 library toward higher energies, with inclusion of incident charged particles and the evaluation of related uncertainties (covariance data)
- FENDL-3 will be released at the end of the 3 years of the Coordinated Research Project (CRP) activities

Expanded FENDL-3 General Purpose Neutron Library

- During the 2nd RCM held in March 2010, a decision was made to nearly double the number of materials in the library and the source of evaluation for each material was agreed on
- Materials added to the library were based on input obtained from the fusion neutronics community for ITER and IFMIF. These are 23 elements with their constituent isotopes:

Re, Zn, Ag, Ba, Y, Cd, Ce, Ar, Er, Sb, Rh, Sc, Br, Ge, I, Lu, La, Cs, Pt, Hf, Gd, U, Th

- Only 3 actinide isotopes will be added as they are needed for neutron measurement by fission chambers (U-235, U-238) or exist in the ITER concrete (Th-232)
- Total number of isotopes in library increased to 166
- Evaluations to be utilized for these materials were selected

M.E. Sawan, "Summary Report from 2nd RCM on Nuclear Data Libraries for Advanced Systems – Fusion Devices (FENDL-3)," INDC (NDS)-567, IAEA (June 2010)

Neutronics Codes

- **Deterministic**
 - PARTISN, DOORS, DENOVO, ATTILA
- Monte Carlo
 - MCNP, TRIPOLI
 - CAD-based
 - Translators: MCAM, McCAD
 - Direct coupling: DAGMC

Direct Accelerated Geometry Monte Carlo (DAGMC) Motivations

• Cheaper

Reduce human effort

• Better

- Avoid human error in conversion
- Include higher-order surface descriptions in analysis
- Faster
 - Reduce human effort faster design iteration
 - Provide common domain for coupling to other analyses

Detailed High-Resolution, High-Fidelity Calculations with DAG-MCNP in CAD Model of ITER FWS Module 13

THE UNIVERSITY WISCONSIN MADISON

Detailed Calculations with DAG-MCNP for Revised FWS Module Design

Detailed 3-D Neutronics for DCLL TBM

Application to ARIES-CS Compact Stellarator

Examined effect of helical geometry and non-uniform blanket and divertor on NWL Distribution, TBR and nuclear heating

VLT, September 15, 2010

HAPL Final Laser Optics

- Fast neutron flux at dielectric optics depends on material choice for the GIMM and total GIMM areal density
- AlBeMet GIMM results in highest flux level (factor of ~1.6 higher than with lightweight SiC GIMM)
- Significant drop in nuclear environment occurs as one moves from the GIMM to dielectric focusing and turning mirrors

I, September 15, 2010

Multi-Physics: Coupling to CFD

- Fine mesh DAG-MCNP5 results
 - 1-3 mm Cartesian mesh overlay
 - Total nuclear heating
- Arbitrary mesh on CAD geometry
 - Tetrahedral
 - Polyhedral (Star-CCM+)
- Automated interpolation using MOAB

Multi-Physics: Coupling to CFD

- 1 of 40 fingers in ITER First Wall concept
- Beryllium plasma facing component
- CuCrZr heat sink into pressurized water
- Steel backing for structural support
- 0.2 MW/m² heat flux onto Beryllium
- Inlet: 0.2 kg/s water, 373 K, 3 Mpa

16

Neutronics+CFD Coupling

Research Directions Analysis of Deformed Systems

- Thermal response can lead to structural/geometric changes
- Nuclear analysis on deformed system will help understanding the feedback on performance parameters
- Not applied yet for fusion but used for deformed fission reactors

Research Directions Advanced Mesh Tallies

- Perform tallies on arbitrary polyhedral mesh
 Prototype exists for tetrahedral mesh
- Get detailed isotopic compositions after activation/transmutation
- Solve separate activation problem in millions of mesh elements
- Use previous source sampling capability to represent distributed photon source

Research Directions Hybrid Methods 36 m

- Monte Carlo not wellsuited to deep penetration problems
- Deterministic methods not well suited to gap streaming problems
- Use deterministic methods to develop importance maps for Monte Carlo problems

Large size
Complex geometry
Massive shielding

ORNL hybrid methods (CADIS, FW-CADIS) suitable for fusion applications

ITER magnet heating

	Time (day)	Max. uncertainty	Normalized FOM
Analog	121.3	5.9%	1
WWG	11.0	3.6%	30
FW-CADIS	0.8	4.5%	275

	Dose (mrem/hr)	Relative uncertainty	Time (day)	Normalized FOM				
MC (No CADIS)	0.48	76.7%	610.0	1				
MC (CADIS) 0.27		3.8%	8.6	10,566				
Denovo	0.18	280 million cell 1 hr, 14 400 cores = 610 processors days		cell ores rs days				

VLT, September 15, 2010

Summary

- An updated comprehensive (ns to 150 MeV, activation, p, d, covariance) fusion evaluated nuclear data library FENDL-3 that is suitable for all fusion systems will be developed, validated, and released by the end of 2011
- Progress made on improving fusion neutronics predictive capabilities for accurate and fast analysis of the large geometrically complex fusion systems
- Many challenging issues remain to allow efficient automated integration with other multi-physics analyses

