TBM Mock-up Experiments at DIII-D and Implications for Ferromagnetic Fields

by M.J. Schaffer

for the International TBM Team

"Research Highlight" presented to the VLT Monthly Conference Call, 2010 July 21

GOAL: Measure Effects of Test Blanket Module (TBM) Ferromagnetism on Plasma for ITER

Ferromagnetic TBM module pair makes a local "speed bump" field error

Calculated by S Putvinski, at plasma surface

- ~1% mid-to-peak in ITER
- Comparable toroidal field coil ripples in JET & JT60U significantly reduced H-mode confinement
- It is not yet known how to predict consequences of one or a few magnetic "speed bumps"

Mock-up Approximates Magnetization of Two ITER TBMs in One ITER Equatorial Port

Mock-up Has 2 Racetrack Coils in One DIII-D Equatorial Port

TBM mock-up coil assembly fits into custom port cavity

- Racetrack coils \Leftrightarrow M_{TOR} Vertical solenoid \Leftrightarrow M_{POL}
 - Separate power supplies for M_{TOR} and M_{POL} , to match q
- Moveable, $\Delta R \approx 1.0$ 'ITER-meter'
- Matches ITER TBM far field
- Capable of ~3x ITER $\triangle B/B_0$
 - Matches <u>surface-average</u> <u>amplitude</u> of the 6 ITER TBMs
 - Does not match their <u>spectrum</u>

TBM Mockup Baby Book

Solenoid bobbin

With first Cu-ribbon racetrack coil

Racetrack bobbin welded to wound solenoid

Test fit with all coils

Inconel port cavity with graphite tiles

Status Display in Control Room

DIII-D TBM Mock-up Is About as Tall as a Scaled-Down ITER TBM

DIII-D port is considerably narrower than a scaled ITER TBM port

Mock-up secured in its channel with cooling water attached

Mock-up rolled into equatorial port cavity

NET Effect of TBM Error Field on Magnetic Lines is Small. Effects on Plasma?

- TBM B_r acts \approx equally in and out along a magnetic line
- Net displacement of line ≈ 0
- Generic result for small ferromagnetic objects near plasma

RESULTS (1)

- TBM mock-up reproduced many features of the error field from 2 ITER TBMs in 1 ITER port
 - Greatest difference from ITER was not having 3 ports
 - Mock-up applied over 3 times ITER local TBM ripple
- DIII–D experiments used ITER-similar plasmas
 - Similar shape, edge collisionality, TF-coil ripple
- Plasma initiation was unaffected by TBM field
- L-to-H-mode power threshold unaffected
- L-mode plasmas were weakly affected

RESULTS (2)

- Rotation reduction was the largest TBM effect
 - Had characteristics of a non-resonant braking torque
 - Not dominated by resonant magnetic braking

RESULTS (3)

- H-mode confinement was reduced by TBM mock-up
 - Density, β, stored energy, H98, energy confinement times were reduced as much as ~20%
 - > tested up to ~4 times local ITER TBM bump
 - TBM effects increased with plasma ß
 - Less than 10% changes for $\beta_N < 2$
 - > ITER inductive scenario plans $\beta_N = 1.8$
 - H-mode confinement reductions showed no strong dependence on edge collisionality

Reductions of Density, Beta, Confinement Factor and Toroidal Rotation Increased with Mock-up Current

RESULTS (4)

- TBM field had no significant effect on suppression of ELMs by n=3 resonant magnetic perturbations
- TBM field sometimes enhanced amplitude of MHD, especially in high-performance plasmas
- TBM effects on <u>global</u> fast ion losses were smaller than diagnostic error bars
 - Consistent with numerical modeling
- TBM field caused <u>local</u> heating of mock-up cavity protection tiles for small plasma-wall gap at maximum mock-up coil current

RESULTS (5)

- TBM Mock-up field reduced tolerance to plasma locking by an n=1 error test field
 - At low and high-ß
- Re-optimization of DIII–D empirical n=1 error correction restored no-TBM tolerance to locking (at low ß, Ohmic)
 - TBM n=1 errors, though small, are the most critical
 - > n=1 errors are simple to correct
 - Consistent with IPEC prediction
 - > Good understanding
- Did not have time to test:
 - Does n=1 error compensation restore tolerance to locking for high-ß H-mode plasmas, too?
 - Does n=1 compensation also reduce TBM braking?

In Closing

- TBM mock-up experiments provided essential data to the ITER Organization
 - TBM consequences on plasmas appear to be smaller than feared
 - Theory to extrapolate confinement to ITER is not yet mature
 - > Mock-up data will help benchmark theory
 - Results should be applicable to other small (with respect to plasma) ferromagnetic error fields
- Future experiments are needed to determine if n=1 error compensation alone:
 - Will safeguard tolerance to locking in H-mode
 - Will affect plasma braking

