Disruption Mitigation with Shattered Pellets

L. R. Baylor, T.C. Jernigan, S.K. Combs, N. Commaux, S.J. Meitner, D.A. Rasmussen, P.B. Parks ${ }^{1}$

Oak Ridge National Laboratory
${ }^{1}$ General Atomics

Presentation at:
VLT June 2009 TeleCon,
17-June-2009

告 Oak Ridge National Laboratory
MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Disruption Threats and Their Mitigation

Massive gas injection has been used to mitigate the three threats arising from disruptions:

- Thermal loading:
- Rapid heat load ablates material surfaces
- Large quantities of gas used to dissipate plasma energy by radiation
- Halo currents: Large JxB forces on vessel and first wall
- MGI causes rapid quench of the plasma, results in minimal plasma motion
- Substantially reduces the vessel halo currents
- Runaway electrons:
- ITER could have up to 10 MA of RE current in 10-20 MeV range of energies from avalanche amplification during current quench $\mathrm{G} \sim \mathrm{e}^{\mathrm{lp}} \sim 10^{21}$
- Penetration into PFCs - Component melting and water leaks are possible
- Avalanche suppression in ITER needs $\mathrm{N}_{\mathrm{inj}} \sim 5 \times 10^{\mathbf{2 5}}$

Example of Disruption Mitigation on Alcator C-Mod

- Comparison of unmitigated disruption with Ar gas jet mitigation showing faster current quench

D. Whyte, EPS 2006

How is a Disruption Mitigated with a Gas Jet?

Jumbo Valve - $10^{6} \mathrm{~Pa}-\mathrm{m}^{3} / \mathrm{s}$

VLT Jun09 LRB

MGI on ITER

- All DIII-D experiments so far done on upper port with gas valve more than 1 m from plasma.
- ITER has two upper ports dedicated for DM. (One is above NBI so no access)
- Gas jet injection may not be optimal in such a large machine, especially if valve must be located outside the biological shield.
- A faster more efficient method to inject the material is needed.

Shattered Pellets an Option for DM

- Whole pellets of the size needed for DM are potentially harmful to the first wall and not likely to fully ablate. Impurity Killer pellets generate runaway electrons.
- Shattered pellets reduces the danger to PFCs and provides more surface area for ablation.
- Pellets are known to shatter on impact with hard surfaces.
- Normal velocities in excess of 25 m/s result in shattered D_{2} pellets. (Combs, S.K. et al, Fus. Tech. 1998)
- Optimal design of a shatter plate needed for the DM application.

Pellet Speed $=82.1 \mathrm{~m} / \mathrm{s}$
Impact Angle $=15^{\circ}$
Normal Velocity $=21.2 \mathrm{~m} / \mathrm{s}$
Shot 1072

Pellet Speed $=81.1 \mathrm{~m} / \mathrm{s}$
Impact Angle $=30^{\circ}$
Normal Velocity $=40.6 \mathrm{~m} / \mathrm{s}$
Photographs of $10-\mathrm{mm} \mathrm{D}_{2}$ Pellets After Impact on Inclined Flat Plate

Pipe-Gun Pellet Injector for Large Pellet Formation

Pellet Injector for Shattered Pellets for Planned Disruption Mitigation Testing on DIII-D

- A pellet injector pipe gun is being modified from $\mathbf{1 m m}$ to $\mathbf{1 5 . 3} \mathbf{~ \mathbf { m m }}$ barrel.
- Pellets will contain -2×10^{23} atoms ($3.4 \mathrm{~cm}^{3}$, 9 mm spherical radius equivalent)
- Tested in the lab to verify pellet formation and shattering pattem.
- Installed now and is planned for DM experiments in 2009.
S. Combs - SO3B-6 SOFE 2009

VLT Jun09 LRB

Pellet Injector for Shattered Pellets Installed for Disruption Mitigation Testing on DIII-D

Shotgun Pellet Injector Commissioned on DIII-D

Data from a 15.3 mm deuterium pellet fired into DIII-D from the shotgun pellet injector showing the trigger signal, pressure burst behind the pellet and pellet mass detector signal. The mass detector signal indicates a full size whole pellet traveling at $\sim 500 \mathrm{~m} / \mathrm{s}$.

VLT Jun09 LRB

Pellet Injector for Shattered Pellets Looks Feasible for ITER

- A pipe-gun injec tor with multiple barrels can provide the necessary particle inventory to the plasma in $\sim \mathbf{1 5} \mathbf{~ m s}$ with the injec tor outside the biological shield. Faster with injec tor in the port plug.
- Ne or Ar with mixtures of D_{2} pellets are easily formed and can be injected at speeds of - $500 \mathrm{~m} / \mathrm{s}$.
- Propellant gas follows the pellets into the vessel orcan be trapped.
- Combination of pellets and gas jets possible

Representation of the ITER Time Scale for Different Gas/Pellet Species

This assumes DM system is 10 m from plasma (ignores initial gas shock)
Clearly need to have gas valves inside of port for fast mitigation

Summary

- Time scales and gas quantities for DM on ITER will be challenging for gas jets.
- Shattered Pellets might have advantages. Mixture of injection systems may be needed to mitigate all effects.
- Shattered pellet system now operational on DIII-D and will be used next week for initial DM experiments. Comparison with gas jet results will be key outcome.
- Shattered neon pellets could be useful for ITER to help mitigate disruptions beyond that from gas jets and/or dust.

References

- [1] ITER Design Description Document
- [2] ITER Vacuum System Description (P. Ladd, Fus. Eng. Design, 58, 2001, 377, C. Day, IAEA 2004, D. Murdoch IVC 2007)
- [3] Parker, R.R., Nucl. Fusion 40 (2000) 473.
- [4] Nygren, R., Implications for Runaway electrons, FEDC 1995.
- [5] Whyte, D., Disruption mitigation experiments, EPS 2006.
- [6] Jernigan, T.C., et al, SOFE 2006
- [7] Rosenbluth, M.N., and Putvinski, S.V., Nucl. Fusion 37 (1997) 1355.
- [8] Wesley, J.C., Memo on ITER DM for Design Review 2007.
- [9] Granetz, R., Disruption Mitigation on C-Mod, APS 2006
- [9] Day, C. et al, ITERVAC, IAEA 2006, IVC 2007
- [10] Jernigan, T.C., DM Mitigation Technology, EPS 2007
- [11] Finken, K.H., et al., Nucl. Fusion 48 (2008) 115001.
- [12] Bozhenkov, S.A., et al, Rev. Sci. Instr. 78 (2007) 33503

All Aspects of DM Need to be Considered

- The overall DM system needs to be considered from detection to recovery.

