A Novel Experimental Technique for Exploring the Transport and Fate of Helium in RAF/M Steels for Fusion

R.J Kurtz¹, D.S. Gelles¹, N. Hashimoto², D.T. Hoelzer², P. Miao³, G.R. Odette³, B.M. Oliver¹, H. Tanigawa⁴, and T. Yamamoto³

¹Pacific Northwest National Laboratory
²Oak Ridge National Laboratory
³University of California, Santa Barbara
⁴Japan Atomic Energy Agency

VLT Conference Call November 20, 2007

Work supported by the U.S. Department of Energy, Office of Fusion Energy Sciences

> Pacific Northwest National Laboratory U.S. Department of Energy

Battelle

Reduced Activation Ferritic/Martensitic Steels for Fusion (Fe-0.1C-9Cr-2W-0.25V-0.07Ta)

Advantages

- Well-developed technology for nuclear and other advanced technology applications.
- Fusion materials program has developed reduced activation versions with equivalent or superior properties.
- Resistant to radiation-induced swelling and helium embrittlement.
- Compatibility with aqueous, gaseous, and liquid metal coolants permits range of design options.

Issues

- Upper operating temperature limited to ~550°C by loss of creep strength.
- Potential for radiation-induced embrittlement at temperatures <400°C.
- Possible design difficulties due to ferromagnetic properties.

CURRENT RESEARCH

Expand Low Temperature Operating Window

- Pursue collaborative international fission reactor irradiation program (IEA activities)
 - Investigate micro-mechanics of fracture and radiation-induced reductions in fracture toughness.
 - Understand the role of helium on fracture and crack propagation.
 - Develop Master Curve to characterize effects of irradiation on temperature dependence of fracture toughness.

Expand High Temperature Operating Window

- Explore nitride dispersions and improved TMT.
- Develop nanocomposited ferritic alloys (NFA).
 - Expand upper operating temperature.
 - Radiation-stable, tough microstructures.

3-D atom probe image; clusters of ~100 atoms of Y, Ti, and O responsible for high strength of NFA materials

Impact of He-Rich Environment on Neutron Irradiated Materials

- A unique aspect of the DT fusion environment is substantial production of gaseous transmutants such as He and H.
- Accumulation of He can have major consequences for the integrity of fusion structures such as:
 - Loss of high-temperature creep strength.
 - Increased swelling and irradiation creep at intermediate temperatures.
 - Potential for loss of ductility and fracture toughness at low temperatures.
- Trapping at a high-density of tailored interfaces is a key strategy for management of He.

Swelling in stainless steel is maximized at fusion-relevant He/dpa values.

He Embrittlement: Unresolved Questions

- What is the sequence of events after He generation that controls its fate?
 - How does He diffuse?
 - How and where is He trapped?
 - What is the effect of grain boundary type on He bubble density and size?
 - How does He behave at trapping sites to form bubbles?
- Can nano features in advanced ferritic alloys stably trap He and render it innocuous in very fine bubbles?

Managing Radiation Effects in Ferritic Alloys

Use high sink strength of nano-features (NF) to trap (getter) both He (in fine bubbles) and vacancies (to enhance self-healing of damage by recombination with self-interstitial atoms)

Coupling of Modeling and Experiment to Determine He Transport and Fate

In Situ Helium Implanter Layer

- Use n,α reactions (various sources) in mixed spectrum reactors to produce controlled He/dpa at fusion relevant conditions.
- Avoids most confounding factors.
- Apply to any material e.g., SiC and a variety of specimens.
- Ni injector produces up to 18 µm uniformly deposited He in Fe.
- Can not obtain bulk property information.

Eurofer97 Specimen Preparation Method

=> Cu/TEM/Cu - cross sectioned to t \approx 0.5 mm

- Ar ion milling for TEM observation (V_{acc}=5 kV to 2 kV variation)
- JEOL-2010F (200kV FE)
- High precision lapping
- He desorption isotope-dilution magnetic sector mass spectrometer
- Cross-sectional Knoop hardness
- Nano-indentation (Hysotron)

 Ar^{+} (5 kV -> 2 kV)

Implanted

layer

Unimplanted Eurofer97

NiAl

Overview of He Bubble Structure

Material	T,°C	dpa - He	<2r>, nm	N, m ⁻³
Eurofer97	300	4 - 89	0.9 ± 0.2 (est.)	3.6x10 ²³
Eurofer97	400	4 - 82	3.0 ± 1.4	1.2x10 ²²
Eurofer97	500	10 - 380	4.3 ± 1.6	1.5x10 ²²
MA957	500	10 - 380	0.9 ± 0.4 (*)	3x10 ²³ (*)

MA957 Through-Focus Series TEM (Fe-14Cr-0.3Mo-0.9Ti-0.25Y₂O₃)

- Features showing bubble contrast are associated with black features which correlate with Fe depletion areas by ≈ 69%.
- N density of bubble contrast depends on location thickness => Surface features (oxides?) + Bulk features bubbles

Calculated He Concentration From Measured Bubble Sizes and Number Densities

High P equation of state used to calculate the mole fraction He in bubbles of radius <r>.

NkT	Specimen	Injected He, appm	<2r>, nm	Т, °С	No. of He atoms	N, m ⁻³	Bubble He, appm
V	Eurofer97	90	0.9	300	64	3.6x10 ²³	270
	Eurofer97	90	3.0	400	909	1.2x10 ²²	128
	Eurofer97	380	4.3	500	2186	1.5x10 ²²	384
	MA957	380	0.9	500	35	3x10 ²³	131

 $P \approx \frac{2\gamma}{\langle r \rangle} = \frac{ZNk}{V}$

 $\gamma = 2J/m^2$

Measured He Concentration in Specimen R25: 500°C, 10 dpa, 170 appm He

High-sensitivity isotope-dilution magnetic sector mass spectrometer used to determine the He concentration in two specimens with duplicate measurements. NiAl layer removed by very careful sanding.

Thick = implanted layer only + unimplanted Eurofer97.

Specimen	m*, mg	[He], 10 ¹⁴ atoms	[He], appm
R25A (thin)	0.013	0.184	132
R25B (thin)	0.022	0.310	132
R25C (thick)	1.138	1.556	12.8
R25D (thick)	1.127	1.395	11.6

*Mass of specimen for analysis. Mass uncertainty is ± 0.001 mg.

Summary

- The He implanter layer concept for producing controlled He/dpa ratios under neutron irradiation has been validated.
- Bubbles were found in the implanted region in Eurofer97 at all three irradiation temperatures.
- The minimum bubble sizes observed were near the TEM resolution limit. Additional work is needed to confirm that specimen preparation procedures or surface oxides did not influence these results.
- Loop and void formation at 300°C may have been suppressed by a high-density of small He bubbles serving as point defect recombination centers.
- At 400 and 500°C pre-existing dislocations appear to be preferred bubble nucleation sites.
- Addition of a high-density of nano-scale Ti-Y-O particles to a ferritic matrix effectively trapped He atoms and dramatically suppressed bubble growth.