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Computational Modeling
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Response of PFC during Transient Events

B Performance under Disruption
— Plasma is terminated

— Low frequency events

H Performance under ELM operation
— Normal operation

— Various types of ELMs

B Performance under VDE
— Low frequency events

— Could have severe effects on structural materials!
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Characteristics of Transients

I. Disruptions

Disruption is a complete loss of
plasma confinement

Up to 100 MJ/m2 is deposited on
divertor materials

Deposition time is from <1 -10 ms.

Complicated physics:
— Vapor cloud shielding
— Vapor instabilities
— Damage to nearby PFC

Disruptions in Tokamaks can be
simulated in powerful plasma gun
devices.
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Models Involved in Predicting High-Intensity
Plasma/Surface Interactions
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Integrated Simulation Package

HEIGHTS-Package: Comprehensive 3-D Simulation
Project for Various Applications

Radiation Plasma/
Material
Transport :
Interaction

External
Energy Driver:

Atomic /

Plasma
Models

Laser, Electron/ion beams,
Electric circuit, etc.
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ITER Divertor Design
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HEIGHTS Analysis of Tungsten Target Thermal
Evolution during Intense Energy Deposition
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Spatial Evolution of Tungsten Solid-Liquid-Vapor Cloud
Temperatures at Two Disruption Times

7000

5000 HEI?HTS Package Solid!l,?.iquid

10 MJ/m® |
B=5T,a=2"

i

5000

w

Vapor Temperature, eV

4000

N

Melting va.-mperaturei

3000

e
o
=
=
~—
<
=
b
=)
£
@
o
b
=)
1)
=
«
ot

Disrupting Plasma

—  @0.11hs

i
—

2000

1000 0
-200 160  -120 -80 -40 80

Distance in Target, um Distance in Vapor, cm

PURDUE -

UNIVERSITY




Evolution and lifetime of a macroscopic droplet moving

Plasma Particles

(lons + Electrons)
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Droplet Velocity and Radius

in vapor cloud
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Other Issues Need to be Studied in Details
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Characteristics of ELM Transients

ll. Edge-Localized Modes

B Much more frequent and must be
tolerated (1-10 Hz).

B Lower energy density about 1-3

MJ/m2 (up to 10% Qo). ... [ Duration
o ] ] Event |Repetition
Deposition time is less than 1 ms. [ms] MJ/m?] | [GWIm?]

B Complicated physics:
— Lower density vapor cloud

— Higher cloud temperature and
velocity

— Mixing effects of vapor and
plasma

B ELMs in future Tokamaks can be
simulated in plasma guns and z-
/theta-pinch devices.

B Plasma contaminations!
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Modeling Stages of ELMs in HEIGHTS

Core Plasma

|

Particle Distribution
Energy Profile
Origin of ELMs

Hassanein (ANL)

Model for Energy Transport

Temperature Distribution

SOL Plasma

Collisionless Plasma
Fokker-Planck Solution
Particle Distribution

Spatial Profile

Divertor

Particle Deposition
Hydrodynamics Evolution
Plasmalvapor Interaction

Radiation Hydrodynamics

PFC
Response

Cloud Formation

Vapor Expansion Dynamics

Erosion Mechanisms

Erosion Lifetime
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HEIGHTS Calculation of Material Erosion
and Cloud Expansion during ELMs
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HEIGHTS Calculation of ITER Divertor Plate
Response to Giant ELMs

Carbon Tungsten
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= Carbon erosion too high for short ELM duration, may be “OK” for longer
duration. (Core plasma contamination is an issue).

" Tungsten ELM erosion is dominated by melt-layer erosion.
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Melt Layer Erosion of Tungsten Brush Samples

50 ELM loads at MK-200UG facility 20 ELM loads at QSPA facility
(TRINITI, Russia) - O
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Various Forces Acting on Melt Layer

during Plasma Instabilities
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Mitigations of Disruptions and ELMs

HEIGHTS Analyzed the Following Options:

1. Liquid Metals as PFCs

2. Injection of Inert Gases
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Lithium Surface under ELM Load

1000 F——7—
Lithium
=1 ms L~
ELM / /
1.00 F D
£ [ Erosion ,/’51 cloud front
3 l ) /lr
o f
T —_—
0.10 | /
L __,—ﬂ-'-'-'-
i __._i e
: o —
-~ i Lithium vapor front
0.01
0 2 4 6 8 10 12

% of Energy in ELMs

120

112

— 24

116

w ‘uolsuedxg pnojd

Erosion, ym

0.30

0.25

0.20

0.15

0.10

0.05

0.00

PURDUE

UNIVERSITY

T —1 30
s Carbon 155
DT cloud front ELM=10% Q |
=]
\ | 20
] 15
\ Carbgn vapor front | 10
LErosion V ]
—E S |’
0 0.2 04 0.6 0.8 1 1.2
ELM duration, ms
] [
| H N
u |
20

wo ‘uoisuedxy pnojo



Mitigations by Neon Gas Injection

B Neon gas should have enough linear density, <nL>, to stop incoming plasma
particles (ions and electrons) and reradiate significant part of their energy.

B Divertor surface temperature is given for different Ne gas density. Shielding
efficiency is very low till <nL>=10"7 cm? with asymptotic value of temperature
T=1500 K. 9

ELM = 10% Q at Strlka pmnt

Surface Temperature, 1000K

<nL>, 10" ¢m? .
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Core Plasma Contamination during ELMs

B Core plasma contamination can be serious.

B There are two other reasons for contamination:

— a) Contamination during SOL reconstruction and

— b) Impurities diffusion along Private Flux Region (PFR).
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Characteristics of Transients

lll. Vertical Displacement Events

Repetition

Duration
[ms]

B Rare events but serious effects

B Energy density similar to
disruptions 20-60 MJ/m2

B Deposition time is much longer
about 100-1000 ms.




HEIGHTS Benchmark of Laboratory Experiments
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*Marshall, T.D., McDonald, J.M., Cadwallader, L.C., Steiner, D. “An experimental examination of
the loss-of-flow accident phenomenon for prototypical ITER divertor channels of Y=0 and Y=2."
Fusion Technology 37, (2000) p. 38-53.
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LOFA Modeling
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*Marshall, T.D., McDonald, J.M., Cadwallader, L.C., Steiner, D. “An experimental examination of the loss-
of-flow accident phenomenon for prototypical ITER divertor channels of Y=0 and Y=2." Fusion
Technology 37, (2000) p. 38-53.
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HEIGHTS Benchmarking of JET VDE
Experiments

JET Experiment HEIGHTS Simulation
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First Wall and Structural Response under

VDE Heating
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Structural material response with Lithium
Layer during VDEs
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PRIME Experimental Facilities
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Conclusions

B Plasma transients in tokamaks are serious events and may prevent
successful and prolonged plasma operation

B Overall erosion damage to plasma instabilities (e.g. ELMs in
normal operation; VDEs, and disruptions in off-normal operation)
should include surface vaporization loss, melt splashing, erosion
of nearby components from vapor radiation or vapor diffusion, and
macroscopic erosion

B Liquid-metals (particularly Li) show promise in mitigating
transients due to self-healing properties and pumping capabilities

B In ELM operation and using liquid metal or inert gas injection to
mitigate giant ELMs, plasma contamination is very serious and can
terminate plasma in a disruption

B ITER design should seriously address all issues regarding
handling extremely large particle and heat fluxes under both

normal and off-normal operation
|
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PURDUE . “



