Tritium Effects on Materials Overview

We Put Science To Work

Presented by Michael J. Morgan Materials Science and Technology VLT Research Highlight July 18, 2006

WSRC-MS-2006-00318

SRNL Programs on Tritium Effects

<u>Outline</u>

- Present an overview of tritium effects on materials programs at SRNL
 - I. Aging Effects on Tritium-Exposed Materials
 - II. Lifecycle Engineering for Tritium Containment Vessels
 - III. Welding / Repair Technologies for Tritium-Exposed and Irradiated Steels
- Emphasis on containment alloys
- Highlight facilities available

I. Aging Effects on Tritium-Exposed Materials

Material Class	Aging Phenomena	
Metal Hydrides		Storage capacity reduced
for Tritium Storage	•	Unrecoverable tritium
	•	Change in adsorption / desorption kinetics
		Helium release
Polymers for valves		Radiation hardening
	•	Seal ability degradation
		Gas production and release
Containment Alloys		Decay helium embrittlement
		Susceptibility to slow crack growth
		Helium-induced hot cracking during welding

Aging Effects on Metal Hydrides

Metal Hydride Investigations

- Pd
- Pd (thick film) on supports (kieselguhr, alumina)
- La-Ni(5-x)-Al(x) alloys various comps. 0>x>1.0
- La-Ni-Sn alloy
- Pd alloys Pd-Cr, Pd-Co, Pd-Ni, Pd-Rh, Pd-Rh-Co, Pd-Al (int. ox.)
- Titanium
- NdCo3
- Zr-Fe-Cr alloy

Objectives

Increase understanding of tritium and decay helium effects on metal hydrides.

Develop and characterize new metal tritides of interest to the NNSA including LaNi5AI and Palladium

<u>Tasks</u>

Tritium Aging Studies of Metal Hydrides for NNSA Applications

Development of Predictive Models of Tritium & ³He in Metals and Hydrides

Tritium Aging Studies of Storage and Separation Materials

Tritium Aging Phenomena in LaNi₅Al

Tritium Desorption Isotherms

- (80° C) for $LaNi_{4.25}AI_{0.75}$
- Various Aging Times.
- Virgin Material;
- Aged 5 Months in Tritium;

 \diamond Aged 5.5 Years in T2;

 \Box , \bigcirc Aged 11.5 Years in T2.

Thermal Desorption from Aged Ti Tritides

Aging Effects on Polymers

Degraded Valve Stem Tip

Dynamic Mechanical Analysis

Objectives

- Characterize radiation damage and gas generation from polymers used in tritium processing
- EPDM, Teflon, Vespel[®] and UHMW-PE
- Synthesize tritium compatible polymers
- Develop radiation damage models

"Effects of Tritium on UHMW-PE, PTFE, and Vespel® Polyimide", Elliot Clark Submitted for presentation and publication at the 17th Topical Meeting of Fusion Energy

Viscoelastic Property Degradation From Tritium Exposure

UHMW-PE

Aging Effects on Tritium-Exposed Containment Alloys

Objectives

- Increase understanding of tritium & decay helium effects on structural alloys.
- Define conditions that lead to tritiuminduced crack growth in fielded components

<u>Tasks</u>

- Measure mechanical & fracture toughness properties and crack growth rates of alloys as a function of hydrogen isotope and helium content
- Investigate role of microstructures including weldments and heataffected zones on tritium compatibility
- Develop techniques for acquiring relevant data from retired components.

Helium Hardened Microstructure

Tritium-exposed Microstructure

- Tritium-exposure causes defect structure
 of nanometer-sized helium bubbles
- Bubbles associated with "punched-out" dislocation loops and clustered along dislocation lines
- Strong obstacles to dislocation motion.
- Response to tritium can't be simulated with hydrogen and depends on material microstructure

Cracking Thresholds and Crack Growth Rates

Threshold Cracking Test

Threshold Cracking Results

SRNL

Fracture Surface

304L Stainless Steel Typical Weld Microstructure

308L Filler Wire Typical Weld Ferrite Content 8-10% by Volume

J-Integral Fracture Toughness Properties of Weldments

- Weld ferrite prevents shrinkage cracking during weld solidification.
- Ferrite beneficial for unexposed material toughness;
- More susceptible to hydrogen / tritium embrittlement
- Aging behavior reduced in weldments in part because of greater off-gassing losses
- "The Effect of Tritium on the J-Integral Fracture Toughness Properties of Type 304L Stainless Steel Weldments" by Michael Morgan Submitted for 17th TOFE, November 2006

Defect Structure in Tritium-Aged Weldment

- Low diffraction contrast image showing helium bubbles (arrows)
- Ferrite phase free of helium bubbles
- Helium bubble from tritium decay seen in austenite only
- Results show that embrittlement from aging is lower in weldments than base metals

Precision Electric Discharge Machining for Harvesting Data from Exposed Components

II. Lifecycle Engineering for Tritium Containment Vessels

- Develop continuum models for crack propagation
- Develop microstructural models for bulk regions, weld
 regions and heat-affected zones
- Include region's unique properties: fracture, tritium solubility & diffusivity, & aging
- Use FEM analysis for performance prediction

 An interesting question to be addressed is whether the grain boundary can decohere by the presence of a helium bubble and its associated tritium atmosphere

• Tritium

Helium

Micromechanical approach here requires description of the grain boundary cohesive properties via a modified Rice-Hirth thermodynamics of decohesion to account for non-equilibrium aspects of decohesion along the grain boundary

Such a thermodynamic theory of decohesion has been developed by Liang and Sofronis (J. Mech. Phys. Solids, 51, 1509-1531, 2003) in the case of Nickelbase alloys

Diffusion Models: Fracture Mechanics C-Specimen

Crack Tip Enhancement in Stainless Steel Charged and Tested in Hydrogen Gas(5000 psi)

Crack Tip Depletion From Off-Gassing Losses

No Crack Tip Enhancement in Stainless Steel Charged in Hydrogen (5000 psi) and Tested in Air

III. Welding / Repair Technologies for Fusion Materials

Welding System

Stringer beads and overlay Welds on T2-Exposed Plate

Objectives

- Study the effects of helium embrittlement cracking on Types 316LN and 304 SS plates using low heat input overlay welds and GTA stringer beads
- Characterize the He bubble microstructures in weld heat-affected zones (HAZ).

Findings

- Low-heat, Low-penetration welds reduce HAZ cracking
- Cracking in HAZ much more severe in 304 for both weld types.
- Much more porosity in 304 stringer beads; greater depth of penetration in 316 welds.
- He bubbles on grain boundaries in both steels, more Cr-rich carbides in 304

Overlay Welds On Plates With 90 appm Helium

Significantly more HAZ Cracking in 304 – 35.5 J/mm² (22.9 kJ/in²)

Stringer Beads 90 appm Helium

More Cracking & Porosity (304), Greater Depth of Penetration (316LN)

Grain Boundary in HAZ of Overlay Weld 316LN

Helium Bubble on HAZ Grain Boundary

- Tritium causes unique effects on the properties of a variety materials needed for processing tritium
- In hydride materials, tritium aging changes the thermodynamic behavior including a loss of storage capacity, unrecoverable tritium and contamination by helium release
- In polymers, beta-radiation from tritium decay causes hardening, embrittlement, seal degradation, and gas production
- In structural alloys, tritium aging results in embrittlement and slow crack growth; severity depends on original microstructure
- Weld repair technologies developed for minimizing hot cracking resulting from helium from irradiation or tritium decay
- Modeling now being utilized for improving predictive capabilities

Summary

Tritium Facilities and Capabilities:

- Sample charging up to 5000 psi and 350 C
- Mechanical and fracture mechanics testing
- Isotherm measurements for hydrides
- Polymer dynamic mechanical analysis
- Scanning and transmission electron microscopy
- Hydrogen permeation
- Electric-Discharge machining and welding laboratory
- Modeling of tritium partitioning and effects in microstructures
- Modeling of structural / fracture performance of tritiumexposed materials

Tritium Effects Principal Investigators

- Structural alloys: *Dr. Michael J. Morgan*
- Polymers: *Dr. Elliot Clark*
- Metal Hydrides: *Dr. D. Thomas Walters*
- Microscopy / Welding Technologies: Dr. Michael Tosten
- Contact Dr. Robert Sindelar for additional information

