

Disruption Analysis

Module 18

August 3, 2005

M. Ulrickson Presented on the VLT Call

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Summary

- Both ITER disruption cases completed (18 ms exponential and 40 ms linear)
- Model includes:
 - Vessel (upper, midplane and divertor ports)
 - Module 18 and 17 (two modules each 20 deg.)
 - Divertor (three modules 20 deg.)
 - Lower triangular support
- Just a few examples of the results are shown

Vessel, Shield and Divertor

6/May/2005 10:59:23

Shield-layout

Shield Current (Preliminary)

Radial Current Density

Sandia National Laboratories

Toroidal Current Density

Vertical Force Density (JXB)

- The first wall is very finely cut to reduce eddy currents in the copper heat sink layer
- Both disruption cases have been calculated
- The forces in the first wall are less than those in the shield
- Halo currents have also been simulated in the First Wall
- Halo currents can lift the fingers of the FW off the shield module

First Wall layout

Halo Current Flow In The First Wall

Halo Currents Flow Mainly in the Cu

