Results from Recent Tests of the JET ITER-Like High Power Prototype ICH antenna

R. H. Goulding, F. W. Baity, A. Fadnek, J. Caughman, D. Sparks, D. Rasmussen, M. Brown ORNL

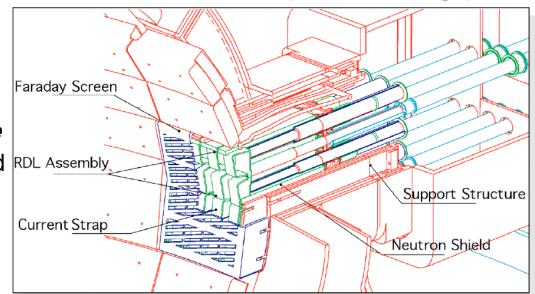
> J. Hosea, D. Loesser **PPPL**

F. Durodie, P. Lamalle *ERM/KMS*

R. Walton, M. Nightingale

presented by David Swain VLT Conference Call June 29, 2005

EUROPEAN FUSION DEVELOPMENT AGREEMENT

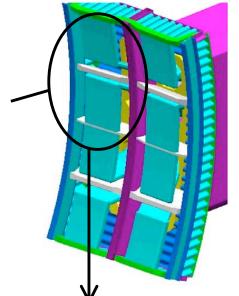

7 3 7

US and EU have collaborated to design and test an "ITER-like" high-power antenna

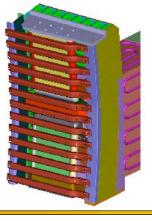
- For ITER, ICRH plasma coupling requirements are challenging:
 - Large antenna/separatrix gap
 - ELMs can produce order of magnitude variation in rf plasma load

ITER design goals:

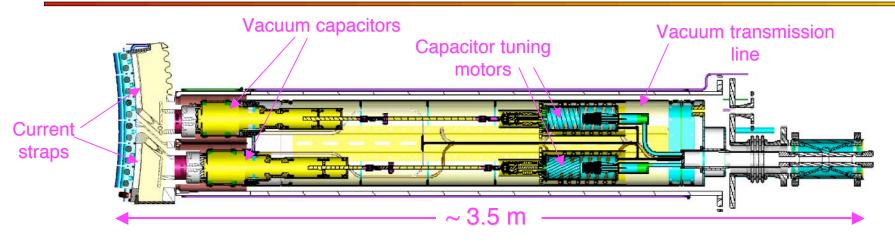
- 20 MW through single port, 40-55 MHz
- Produce launcher *insensitive* to changes in loading caused RDL Assembly by ELMs
- Minimize electric fields in antenna


ITER ICRF Launcher (Baseline Design)

- EU proposed to build an advanced antenna with ITER-relevant features for use on JET
- US collaborated in design and prototype testing


The High-Power Prototype (HPP) was built to test the JET-EP ICRF load-tolerant antenna concept

- JET-EP antenna is an advanced ion-cyclotron launcher
 - To be installed on JET in 2006.
 - Designed to couple ICRF power at high density (7.4 MW /m²) into an ELMy H-mode plasma
 - New "load-tolerant" circuit design
- It advances many aspects of ICH technology:
 - Use limited port space, with a high power density launcher
 - Run for 10-s long pulses
 - Work with rapidly varying plasma loads
 - Operate over a wide range of density and magnetic fields
 - Survive in a reactor environment
- ORNL and PPPL, in collaboration with the EU, fabricated a highpower prototype of one quadrant of the JET-EP antenna.
 - Complicated current strap shapes
 - Internal tuning and matching using two vacuum capacitors
 - Large vacuum transmission line
 - Component fabrication as close to JET-EP as possible



High-power Prototype antenna

High-Power Prototype (HPP) Features Internal Capacitors and Large Vacuum Transmission Line

2001: Started design work, collaboration between US and EU

2003: Initial tests at ORNL

- Found significant problems
- JET EP antenna design modified

2005: Tests of improved antenna

- Worked significantly better
- Minor additional changes needed

HPP Antenna before installation in vacuum stand

Prototype tests were needed to answer several Critical Questions

- What is the maximum antenna operating voltage:
 - For short-pulse operation?
 - For long-pulse operation?
- Are there thermal problems with long-pulse high-voltage, highcurrent operation:
 - Do metal surfaces heat up?
 - Do the capacitor ceramics heat up?
 - No way to directly cool ceramics, so have to rely on between-shot cooling.

2003 tests found significant problems

- Arcing between C tiles on the side of the antenna to the Faraday shield limited max V to < 25 kV for short pulses
 - Removing tiles allowed $V_{max} > 42 \text{ kV}$

time (ms)

45

- Long-pulse operation caused melting near base of current strap
 - High rf current density computed post hoc
- Regions of current strap cracked or lost plating (fabrication problems)

Computed current concentration Arc damage on current strap Voltage test after tile removal 50 Capacitor fixed end voltage (kV) 45 40 35 30 25 20 15 10 upper capacitor onite -field (f=tZe6) (1) 5 Iower capacitor Component aviaus-1d = 2.80437 0/s at -23.6484 requescy = 4.20+00 0 15 20 25 30 35 40 50

Revisions to JET-EP design were made to correct problems

10

0

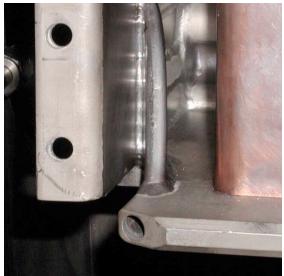
5

Modified antenna showed much improved results in 2005

- Modified tiles with 10 mm gap to Faraday shield bars
 - eliminated arcing
 - allowed capacitor voltages > 50 kV to be achieved with tiles installed

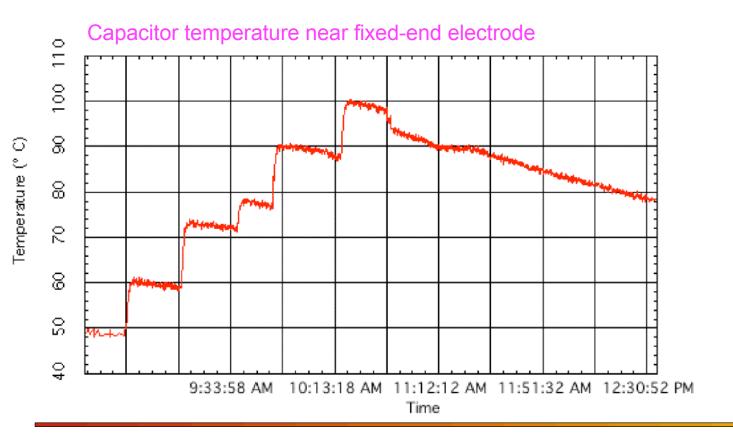

Arc damage observed in 2003 Closeup of damaged region

Same region after recent operation - no damage seen


Re-designed current straps showed no melting after long-pulse operation

Melted region near base of straps eliminated by installation of wedges to redistribute current

CST Microwave Studio calculations


 Localized melting observed after several 0.5 - 0.8 MJ pulses during 2003 operation

No damage observed after many 0.8 - 1.8 MJ pulses during recent operation

DWS - VLT Conf. Call 6/29/05

Vacuum capacitor passed long-pulse thermal tests

- Ceramic capacitor can in vacuum, cooling slow through conduction only
- Results of series of 10-s pulses indicate
 - acceptable heating and cooling
 - ability to operate in vacuum at 50 kV

Conclusions

- Construction and testing of antenna prototype *very* successful
 - Design problems identified
 - Construction pointed out fabrication and plating issues
 - JET-EP Antenna design revised to fix the problems
 - Saved lots of money *and time*, compared to repairing the actual antenna
- Revised version of antenna worked much better
 - Higher voltage, longer-pulse operation
 - Issue: Thermal glow seen on graphite tiles near Faraday shield bars
 - Antenna design revised
- Good preparation for collaborating with EU to build ITER antenna
 - Developed good working relationship with EU researchers
 [Note: ITER antenna split 50:50 between US and EU]
 - Found out realities of dealing with EU system
 - Good news: hard-working, dedicated, state-of-the-art researchers
 - Bad news: lots of red tape in their design and procurement system
- Looking forward to participation in experiments on JET with new antenna in 2006.